Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|
2 |
|
nnne0 |
|
3 |
|
peano2z |
|
4 |
3
|
adantr |
|
5 |
|
dvdsval2 |
|
6 |
1 2 4 5
|
syl2an23an |
|
7 |
6
|
biimpa |
|
8 |
|
flid |
|
9 |
7 8
|
syl |
|
10 |
|
nnm1nn0 |
|
11 |
10
|
nn0red |
|
12 |
10
|
nn0ge0d |
|
13 |
|
nnre |
|
14 |
|
nngt0 |
|
15 |
|
divge0 |
|
16 |
11 12 13 14 15
|
syl22anc |
|
17 |
16
|
ad2antlr |
|
18 |
13
|
ltm1d |
|
19 |
|
nncn |
|
20 |
19
|
mulid1d |
|
21 |
18 20
|
breqtrrd |
|
22 |
|
1re |
|
23 |
22
|
a1i |
|
24 |
|
ltdivmul |
|
25 |
11 23 13 14 24
|
syl112anc |
|
26 |
21 25
|
mpbird |
|
27 |
26
|
ad2antlr |
|
28 |
|
nndivre |
|
29 |
11 28
|
mpancom |
|
30 |
29
|
ad2antlr |
|
31 |
|
flbi2 |
|
32 |
7 30 31
|
syl2anc |
|
33 |
17 27 32
|
mpbir2and |
|
34 |
9 33
|
eqtr4d |
|
35 |
|
zcn |
|
36 |
35
|
adantr |
|
37 |
|
ax-1cn |
|
38 |
37
|
a1i |
|
39 |
19
|
adantl |
|
40 |
36 38 39
|
ppncand |
|
41 |
40
|
oveq1d |
|
42 |
4
|
zcnd |
|
43 |
|
subcl |
|
44 |
19 37 43
|
sylancl |
|
45 |
44
|
adantl |
|
46 |
2
|
adantl |
|
47 |
42 45 39 46
|
divdird |
|
48 |
41 47
|
eqtr3d |
|
49 |
36 39 39 46
|
divdird |
|
50 |
48 49
|
eqtr3d |
|
51 |
39 46
|
dividd |
|
52 |
51
|
oveq2d |
|
53 |
50 52
|
eqtrd |
|
54 |
53
|
fveq2d |
|
55 |
54
|
adantr |
|
56 |
|
zre |
|
57 |
|
nndivre |
|
58 |
56 57
|
sylan |
|
59 |
|
1z |
|
60 |
|
fladdz |
|
61 |
58 59 60
|
sylancl |
|
62 |
61
|
adantr |
|
63 |
34 55 62
|
3eqtrrd |
|
64 |
|
zre |
|
65 |
3 64
|
syl |
|
66 |
|
nndivre |
|
67 |
65 66
|
sylan |
|
68 |
67
|
flcld |
|
69 |
68
|
zcnd |
|
70 |
58
|
flcld |
|
71 |
70
|
zcnd |
|
72 |
69 71 38
|
subaddd |
|
73 |
72
|
adantr |
|
74 |
63 73
|
mpbird |
|
75 |
|
iftrue |
|
76 |
75
|
adantl |
|
77 |
74 76
|
eqtr4d |
|
78 |
|
zmodcl |
|
79 |
3 78
|
sylan |
|
80 |
79
|
nn0red |
|
81 |
|
resubcl |
|
82 |
80 22 81
|
sylancl |
|
83 |
82
|
adantr |
|
84 |
|
elnn0 |
|
85 |
79 84
|
sylib |
|
86 |
85
|
ord |
|
87 |
|
id |
|
88 |
|
dvdsval3 |
|
89 |
87 3 88
|
syl2anr |
|
90 |
86 89
|
sylibrd |
|
91 |
90
|
con1d |
|
92 |
91
|
imp |
|
93 |
|
nnm1nn0 |
|
94 |
92 93
|
syl |
|
95 |
94
|
nn0ge0d |
|
96 |
13 14
|
jca |
|
97 |
96
|
ad2antlr |
|
98 |
|
divge0 |
|
99 |
83 95 97 98
|
syl21anc |
|
100 |
13
|
adantl |
|
101 |
80
|
ltm1d |
|
102 |
|
nnrp |
|
103 |
|
modlt |
|
104 |
65 102 103
|
syl2an |
|
105 |
82 80 100 101 104
|
lttrd |
|
106 |
39
|
mulid1d |
|
107 |
105 106
|
breqtrrd |
|
108 |
22
|
a1i |
|
109 |
14
|
adantl |
|
110 |
|
ltdivmul |
|
111 |
82 108 100 109 110
|
syl112anc |
|
112 |
107 111
|
mpbird |
|
113 |
112
|
adantr |
|
114 |
|
nndivre |
|
115 |
82 114
|
sylancom |
|
116 |
|
flbi2 |
|
117 |
68 115 116
|
syl2anc |
|
118 |
117
|
adantr |
|
119 |
99 113 118
|
mpbir2and |
|
120 |
|
modval |
|
121 |
65 102 120
|
syl2an |
|
122 |
121
|
oveq1d |
|
123 |
39 69
|
mulcld |
|
124 |
42 38 123
|
sub32d |
|
125 |
122 124
|
eqtr4d |
|
126 |
|
pncan |
|
127 |
36 37 126
|
sylancl |
|
128 |
127
|
oveq1d |
|
129 |
125 128
|
eqtrd |
|
130 |
129
|
oveq1d |
|
131 |
36 123 39 46
|
divsubdird |
|
132 |
69 39 46
|
divcan3d |
|
133 |
132
|
oveq2d |
|
134 |
130 131 133
|
3eqtrrd |
|
135 |
58
|
recnd |
|
136 |
115
|
recnd |
|
137 |
135 69 136
|
subaddd |
|
138 |
134 137
|
mpbid |
|
139 |
138
|
adantr |
|
140 |
139
|
fveq2d |
|
141 |
119 140
|
eqtr3d |
|
142 |
69 71
|
subeq0ad |
|
143 |
142
|
adantr |
|
144 |
141 143
|
mpbird |
|
145 |
|
iffalse |
|
146 |
145
|
adantl |
|
147 |
144 146
|
eqtr4d |
|
148 |
77 147
|
pm2.61dan |
|