Metamath Proof Explorer


Theorem fldsdrgfld

Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Assertion fldsdrgfld F Field A SubDRing F F 𝑠 A Field

Proof

Step Hyp Ref Expression
1 issdrg A SubDRing F F DivRing A SubRing F F 𝑠 A DivRing
2 1 simp3bi A SubDRing F F 𝑠 A DivRing
3 2 adantl F Field A SubDRing F F 𝑠 A DivRing
4 isfld F Field F DivRing F CRing
5 4 simprbi F Field F CRing
6 1 simp2bi A SubDRing F A SubRing F
7 eqid F 𝑠 A = F 𝑠 A
8 7 subrgcrng F CRing A SubRing F F 𝑠 A CRing
9 5 6 8 syl2an F Field A SubDRing F F 𝑠 A CRing
10 isfld F 𝑠 A Field F 𝑠 A DivRing F 𝑠 A CRing
11 3 9 10 sylanbrc F Field A SubDRing F F 𝑠 A Field