| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|
| 2 |
|
flfval |
|
| 3 |
2
|
adantr |
|
| 4 |
1 3
|
eleqtrd |
|
| 5 |
|
simprr |
|
| 6 |
|
cnpflfi |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
|
cnptop2 |
|
| 9 |
8
|
ad2antll |
|
| 10 |
|
toptopon2 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
toponmax |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
simpl1 |
|
| 15 |
|
toponmax |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simpl2 |
|
| 18 |
|
filfbas |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
cnpf2 |
|
| 21 |
14 11 5 20
|
syl3anc |
|
| 22 |
|
simpl3 |
|
| 23 |
|
fmco |
|
| 24 |
13 16 19 21 22 23
|
syl32anc |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
fco |
|
| 27 |
21 22 26
|
syl2anc |
|
| 28 |
|
flfval |
|
| 29 |
11 17 27 28
|
syl3anc |
|
| 30 |
|
fmfil |
|
| 31 |
16 19 22 30
|
syl3anc |
|
| 32 |
|
flfval |
|
| 33 |
11 31 21 32
|
syl3anc |
|
| 34 |
25 29 33
|
3eqtr4d |
|
| 35 |
7 34
|
eleqtrrd |
|