| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flfcnp2.j |
|
| 2 |
|
flfcnp2.k |
|
| 3 |
|
flfcnp2.l |
|
| 4 |
|
flfcnp2.a |
|
| 5 |
|
flfcnp2.b |
|
| 6 |
|
flfcnp2.r |
|
| 7 |
|
flfcnp2.s |
|
| 8 |
|
flfcnp2.o |
|
| 9 |
|
df-ov |
|
| 10 |
|
txtopon |
|
| 11 |
1 2 10
|
syl2anc |
|
| 12 |
4 5
|
opelxpd |
|
| 13 |
12
|
fmpttd |
|
| 14 |
4
|
fmpttd |
|
| 15 |
5
|
fmpttd |
|
| 16 |
|
nfcv |
|
| 17 |
|
nffvmpt1 |
|
| 18 |
|
nffvmpt1 |
|
| 19 |
17 18
|
nfop |
|
| 20 |
|
fveq2 |
|
| 21 |
|
fveq2 |
|
| 22 |
20 21
|
opeq12d |
|
| 23 |
16 19 22
|
cbvmpt |
|
| 24 |
1 2 3 14 15 23
|
txflf |
|
| 25 |
6 7 24
|
mpbir2and |
|
| 26 |
|
simpr |
|
| 27 |
|
eqid |
|
| 28 |
27
|
fvmpt2 |
|
| 29 |
26 4 28
|
syl2anc |
|
| 30 |
|
eqid |
|
| 31 |
30
|
fvmpt2 |
|
| 32 |
26 5 31
|
syl2anc |
|
| 33 |
29 32
|
opeq12d |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
34
|
fveq2d |
|
| 36 |
25 35
|
eleqtrd |
|
| 37 |
|
flfcnp |
|
| 38 |
11 3 13 36 8 37
|
syl32anc |
|
| 39 |
|
eqidd |
|
| 40 |
|
cnptop2 |
|
| 41 |
8 40
|
syl |
|
| 42 |
|
toptopon2 |
|
| 43 |
41 42
|
sylib |
|
| 44 |
|
cnpf2 |
|
| 45 |
11 43 8 44
|
syl3anc |
|
| 46 |
45
|
feqmptd |
|
| 47 |
|
fveq2 |
|
| 48 |
|
df-ov |
|
| 49 |
47 48
|
eqtr4di |
|
| 50 |
12 39 46 49
|
fmptco |
|
| 51 |
50
|
fveq2d |
|
| 52 |
38 51
|
eleqtrd |
|
| 53 |
9 52
|
eqeltrid |
|