Metamath Proof Explorer


Theorem flfneii

Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flfneii.x X = J
Assertion flfneii J Top L Fil Y F : Y X A J fLimf L F N nei J A s L F s N

Proof

Step Hyp Ref Expression
1 flfneii.x X = J
2 1 toptopon J Top J TopOn X
3 flfnei J TopOn X L Fil Y F : Y X A J fLimf L F A X n nei J A s L F s n
4 2 3 syl3an1b J Top L Fil Y F : Y X A J fLimf L F A X n nei J A s L F s n
5 4 simplbda J Top L Fil Y F : Y X A J fLimf L F n nei J A s L F s n
6 5 3adant3 J Top L Fil Y F : Y X A J fLimf L F N nei J A n nei J A s L F s n
7 sseq2 n = N F s n F s N
8 7 rexbidv n = N s L F s n s L F s N
9 8 rspcv N nei J A n nei J A s L F s n s L F s N
10 9 3ad2ant3 J Top L Fil Y F : Y X A J fLimf L F N nei J A n nei J A s L F s n s L F s N
11 6 10 mpd J Top L Fil Y F : Y X A J fLimf L F N nei J A s L F s N