Metamath Proof Explorer


Theorem flfssfcf

Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion flfssfcf J TopOn X L Fil Y F : Y X J fLimf L F J fClusf L F

Proof

Step Hyp Ref Expression
1 flimfcls J fLim X FilMap F L J fClus X FilMap F L
2 1 a1i J TopOn X L Fil Y F : Y X J fLim X FilMap F L J fClus X FilMap F L
3 flfval J TopOn X L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L
4 fcfval J TopOn X L Fil Y F : Y X J fClusf L F = J fClus X FilMap F L
5 2 3 4 3sstr4d J TopOn X L Fil Y F : Y X J fLimf L F J fClusf L F