Metamath Proof Explorer


Theorem flfval

Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion flfval J TopOn X L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L

Proof

Step Hyp Ref Expression
1 toponmax J TopOn X X J
2 filtop L Fil Y Y L
3 elmapg X J Y L F X Y F : Y X
4 1 2 3 syl2an J TopOn X L Fil Y F X Y F : Y X
5 4 biimpar J TopOn X L Fil Y F : Y X F X Y
6 flffval J TopOn X L Fil Y J fLimf L = f X Y J fLim X FilMap f L
7 6 fveq1d J TopOn X L Fil Y J fLimf L F = f X Y J fLim X FilMap f L F
8 oveq2 f = F X FilMap f = X FilMap F
9 8 fveq1d f = F X FilMap f L = X FilMap F L
10 9 oveq2d f = F J fLim X FilMap f L = J fLim X FilMap F L
11 eqid f X Y J fLim X FilMap f L = f X Y J fLim X FilMap f L
12 ovex J fLim X FilMap F L V
13 10 11 12 fvmpt F X Y f X Y J fLim X FilMap f L F = J fLim X FilMap F L
14 7 13 sylan9eq J TopOn X L Fil Y F X Y J fLimf L F = J fLim X FilMap F L
15 5 14 syldan J TopOn X L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L
16 15 3impa J TopOn X L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L