Metamath Proof Explorer


Theorem flge

Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Fan Zheng, 14-Jul-2016)

Ref Expression
Assertion flge A B B A B A

Proof

Step Hyp Ref Expression
1 flltp1 A A < A + 1
2 1 adantr A B A < A + 1
3 simpr A B B
4 3 zred A B B
5 simpl A B A
6 5 flcld A B A
7 6 peano2zd A B A + 1
8 7 zred A B A + 1
9 lelttr B A A + 1 B A A < A + 1 B < A + 1
10 4 5 8 9 syl3anc A B B A A < A + 1 B < A + 1
11 2 10 mpan2d A B B A B < A + 1
12 zleltp1 B A B A B < A + 1
13 3 6 12 syl2anc A B B A B < A + 1
14 11 13 sylibrd A B B A B A
15 flle A A A
16 15 adantr A B A A
17 6 zred A B A
18 letr B A A B A A A B A
19 4 17 5 18 syl3anc A B B A A A B A
20 16 19 mpan2d A B B A B A
21 14 20 impbid A B B A B A