Metamath Proof Explorer


Theorem flge0nn0

Description: The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005)

Ref Expression
Assertion flge0nn0 A 0 A A 0

Proof

Step Hyp Ref Expression
1 flcl A A
2 1 adantr A 0 A A
3 0z 0
4 flge A 0 0 A 0 A
5 3 4 mpan2 A 0 A 0 A
6 5 biimpa A 0 A 0 A
7 elnn0z A 0 A 0 A
8 2 6 7 sylanbrc A 0 A A 0