Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
flid
Next ⟩
flidm
Metamath Proof Explorer
Ascii
Unicode
Theorem
flid
Description:
An integer is its own floor.
(Contributed by
NM
, 15-Nov-2004)
Ref
Expression
Assertion
flid
⊢
A
∈
ℤ
→
A
=
A
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
2
flle
⊢
A
∈
ℝ
→
A
≤
A
3
1
2
syl
⊢
A
∈
ℤ
→
A
≤
A
4
1
leidd
⊢
A
∈
ℤ
→
A
≤
A
5
flge
⊢
A
∈
ℝ
∧
A
∈
ℤ
→
A
≤
A
↔
A
≤
A
6
1
5
mpancom
⊢
A
∈
ℤ
→
A
≤
A
↔
A
≤
A
7
4
6
mpbid
⊢
A
∈
ℤ
→
A
≤
A
8
reflcl
⊢
A
∈
ℝ
→
A
∈
ℝ
9
1
8
syl
⊢
A
∈
ℤ
→
A
∈
ℝ
10
9
1
letri3d
⊢
A
∈
ℤ
→
A
=
A
↔
A
≤
A
∧
A
≤
A
11
3
7
10
mpbir2and
⊢
A
∈
ℤ
→
A
=
A