Metamath Proof Explorer


Theorem flid

Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004)

Ref Expression
Assertion flid A A = A

Proof

Step Hyp Ref Expression
1 zre A A
2 flle A A A
3 1 2 syl A A A
4 1 leidd A A A
5 flge A A A A A A
6 1 5 mpancom A A A A A
7 4 6 mpbid A A A
8 reflcl A A
9 1 8 syl A A
10 9 1 letri3d A A = A A A A A
11 3 7 10 mpbir2and A A = A