Metamath Proof Explorer


Theorem fliftel1

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F = ran x X A B
flift.2 φ x X A R
flift.3 φ x X B S
Assertion fliftel1 φ x X A F B

Proof

Step Hyp Ref Expression
1 flift.1 F = ran x X A B
2 flift.2 φ x X A R
3 flift.3 φ x X B S
4 opex A B V
5 eqid x X A B = x X A B
6 5 elrnmpt1 x X A B V A B ran x X A B
7 4 6 mpan2 x X A B ran x X A B
8 7 adantl φ x X A B ran x X A B
9 8 1 eleqtrrdi φ x X A B F
10 df-br A F B A B F
11 9 10 sylibr φ x X A F B