Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fliftel1
Next ⟩
fliftcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
fliftel1
Description:
Elementhood in the relation
F
.
(Contributed by
Mario Carneiro
, 23-Dec-2016)
Ref
Expression
Hypotheses
flift.1
⊢
F
=
ran
⁡
x
∈
X
⟼
A
B
flift.2
⊢
φ
∧
x
∈
X
→
A
∈
R
flift.3
⊢
φ
∧
x
∈
X
→
B
∈
S
Assertion
fliftel1
⊢
φ
∧
x
∈
X
→
A
F
B
Proof
Step
Hyp
Ref
Expression
1
flift.1
⊢
F
=
ran
⁡
x
∈
X
⟼
A
B
2
flift.2
⊢
φ
∧
x
∈
X
→
A
∈
R
3
flift.3
⊢
φ
∧
x
∈
X
→
B
∈
S
4
opex
⊢
A
B
∈
V
5
eqid
⊢
x
∈
X
⟼
A
B
=
x
∈
X
⟼
A
B
6
5
elrnmpt1
⊢
x
∈
X
∧
A
B
∈
V
→
A
B
∈
ran
⁡
x
∈
X
⟼
A
B
7
4
6
mpan2
⊢
x
∈
X
→
A
B
∈
ran
⁡
x
∈
X
⟼
A
B
8
7
adantl
⊢
φ
∧
x
∈
X
→
A
B
∈
ran
⁡
x
∈
X
⟼
A
B
9
8
1
eleqtrrdi
⊢
φ
∧
x
∈
X
→
A
B
∈
F
10
df-br
⊢
A
F
B
↔
A
B
∈
F
11
9
10
sylibr
⊢
φ
∧
x
∈
X
→
A
F
B