Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|
2 |
|
flift.2 |
|
3 |
|
flift.3 |
|
4 |
|
fliftfun.4 |
|
5 |
|
fliftfun.5 |
|
6 |
|
nfv |
|
7 |
|
nfmpt1 |
|
8 |
7
|
nfrn |
|
9 |
1 8
|
nfcxfr |
|
10 |
9
|
nffun |
|
11 |
|
fveq2 |
|
12 |
|
simplr |
|
13 |
1 2 3
|
fliftel1 |
|
14 |
13
|
ad2ant2r |
|
15 |
|
funbrfv |
|
16 |
12 14 15
|
sylc |
|
17 |
|
simprr |
|
18 |
|
eqidd |
|
19 |
|
eqidd |
|
20 |
4
|
eqeq2d |
|
21 |
5
|
eqeq2d |
|
22 |
20 21
|
anbi12d |
|
23 |
22
|
rspcev |
|
24 |
17 18 19 23
|
syl12anc |
|
25 |
1 2 3
|
fliftel |
|
26 |
25
|
ad2antrr |
|
27 |
24 26
|
mpbird |
|
28 |
|
funbrfv |
|
29 |
12 27 28
|
sylc |
|
30 |
16 29
|
eqeq12d |
|
31 |
11 30
|
syl5ib |
|
32 |
31
|
anassrs |
|
33 |
32
|
ralrimiva |
|
34 |
33
|
exp31 |
|
35 |
6 10 34
|
ralrimd |
|
36 |
1 2 3
|
fliftel |
|
37 |
1 2 3
|
fliftel |
|
38 |
4
|
eqeq2d |
|
39 |
5
|
eqeq2d |
|
40 |
38 39
|
anbi12d |
|
41 |
40
|
cbvrexvw |
|
42 |
37 41
|
bitrdi |
|
43 |
36 42
|
anbi12d |
|
44 |
43
|
biimpd |
|
45 |
|
reeanv |
|
46 |
|
r19.29 |
|
47 |
|
r19.29 |
|
48 |
|
eqtr2 |
|
49 |
48
|
ad2ant2r |
|
50 |
49
|
imim1i |
|
51 |
50
|
imp |
|
52 |
|
simprlr |
|
53 |
|
simprrr |
|
54 |
51 52 53
|
3eqtr4d |
|
55 |
54
|
rexlimivw |
|
56 |
47 55
|
syl |
|
57 |
56
|
rexlimivw |
|
58 |
46 57
|
syl |
|
59 |
58
|
ex |
|
60 |
45 59
|
syl5bir |
|
61 |
44 60
|
syl9 |
|
62 |
61
|
alrimdv |
|
63 |
62
|
alrimdv |
|
64 |
63
|
alrimdv |
|
65 |
1 2 3
|
fliftrel |
|
66 |
|
relxp |
|
67 |
|
relss |
|
68 |
65 66 67
|
mpisyl |
|
69 |
|
dffun2 |
|
70 |
69
|
baib |
|
71 |
68 70
|
syl |
|
72 |
64 71
|
sylibrd |
|
73 |
35 72
|
impbid |
|