Metamath Proof Explorer


Theorem fliftfuns

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F = ran x X A B
flift.2 φ x X A R
flift.3 φ x X B S
Assertion fliftfuns φ Fun F y X z X y / x A = z / x A y / x B = z / x B

Proof

Step Hyp Ref Expression
1 flift.1 F = ran x X A B
2 flift.2 φ x X A R
3 flift.3 φ x X B S
4 nfcv _ y A B
5 nfcsb1v _ x y / x A
6 nfcsb1v _ x y / x B
7 5 6 nfop _ x y / x A y / x B
8 csbeq1a x = y A = y / x A
9 csbeq1a x = y B = y / x B
10 8 9 opeq12d x = y A B = y / x A y / x B
11 4 7 10 cbvmpt x X A B = y X y / x A y / x B
12 11 rneqi ran x X A B = ran y X y / x A y / x B
13 1 12 eqtri F = ran y X y / x A y / x B
14 2 ralrimiva φ x X A R
15 5 nfel1 x y / x A R
16 8 eleq1d x = y A R y / x A R
17 15 16 rspc y X x X A R y / x A R
18 14 17 mpan9 φ y X y / x A R
19 3 ralrimiva φ x X B S
20 6 nfel1 x y / x B S
21 9 eleq1d x = y B S y / x B S
22 20 21 rspc y X x X B S y / x B S
23 19 22 mpan9 φ y X y / x B S
24 csbeq1 y = z y / x A = z / x A
25 csbeq1 y = z y / x B = z / x B
26 13 18 23 24 25 fliftfun φ Fun F y X z X y / x A = z / x A y / x B = z / x B