Metamath Proof Explorer


Theorem fliftrel

Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F = ran x X A B
flift.2 φ x X A R
flift.3 φ x X B S
Assertion fliftrel φ F R × S

Proof

Step Hyp Ref Expression
1 flift.1 F = ran x X A B
2 flift.2 φ x X A R
3 flift.3 φ x X B S
4 2 3 opelxpd φ x X A B R × S
5 4 fmpttd φ x X A B : X R × S
6 5 frnd φ ran x X A B R × S
7 1 6 eqsstrid φ F R × S