Metamath Proof Explorer


Theorem fliftval

Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F = ran x X A B
flift.2 φ x X A R
flift.3 φ x X B S
fliftval.4 x = Y A = C
fliftval.5 x = Y B = D
fliftval.6 φ Fun F
Assertion fliftval φ Y X F C = D

Proof

Step Hyp Ref Expression
1 flift.1 F = ran x X A B
2 flift.2 φ x X A R
3 flift.3 φ x X B S
4 fliftval.4 x = Y A = C
5 fliftval.5 x = Y B = D
6 fliftval.6 φ Fun F
7 6 adantr φ Y X Fun F
8 simpr φ Y X Y X
9 eqidd φ D = D
10 eqidd Y X C = C
11 9 10 anim12ci φ Y X C = C D = D
12 4 eqeq2d x = Y C = A C = C
13 5 eqeq2d x = Y D = B D = D
14 12 13 anbi12d x = Y C = A D = B C = C D = D
15 14 rspcev Y X C = C D = D x X C = A D = B
16 8 11 15 syl2anc φ Y X x X C = A D = B
17 1 2 3 fliftel φ C F D x X C = A D = B
18 17 adantr φ Y X C F D x X C = A D = B
19 16 18 mpbird φ Y X C F D
20 funbrfv Fun F C F D F C = D
21 7 19 20 sylc φ Y X F C = D