Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|
2 |
|
simprl |
|
3 |
|
simplr |
|
4 |
|
flimss1 |
|
5 |
1 2 3 4
|
syl3anc |
|
6 |
|
simprr |
|
7 |
5 6
|
sseldd |
|
8 |
7
|
expr |
|
9 |
8
|
ssrdv |
|
10 |
9
|
ralrimiva |
|
11 |
|
oveq2 |
|
12 |
|
oveq2 |
|
13 |
11 12
|
sseq12d |
|
14 |
|
simplr |
|
15 |
|
simpllr |
|
16 |
|
simplll |
|
17 |
|
simprl |
|
18 |
|
toponss |
|
19 |
16 17 18
|
syl2anc |
|
20 |
|
simprr |
|
21 |
19 20
|
sseldd |
|
22 |
21
|
snssd |
|
23 |
20
|
snn0d |
|
24 |
|
neifil |
|
25 |
15 22 23 24
|
syl3anc |
|
26 |
13 14 25
|
rspcdva |
|
27 |
|
neiflim |
|
28 |
15 21 27
|
syl2anc |
|
29 |
26 28
|
sseldd |
|
30 |
|
flimneiss |
|
31 |
29 30
|
syl |
|
32 |
|
topontop |
|
33 |
16 32
|
syl |
|
34 |
|
opnneip |
|
35 |
33 17 20 34
|
syl3anc |
|
36 |
31 35
|
sseldd |
|
37 |
36
|
anassrs |
|
38 |
37
|
ralrimiva |
|
39 |
|
simpllr |
|
40 |
|
topontop |
|
41 |
|
opnnei |
|
42 |
39 40 41
|
3syl |
|
43 |
38 42
|
mpbird |
|
44 |
43
|
ex |
|
45 |
44
|
ssrdv |
|
46 |
10 45
|
impbida |
|