Metamath Proof Explorer


Theorem flimcfil

Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis lmcau.1 J = MetOpen D
Assertion flimcfil D ∞Met X A J fLim F F CauFil D

Proof

Step Hyp Ref Expression
1 lmcau.1 J = MetOpen D
2 eqid J = J
3 2 flimfil A J fLim F F Fil J
4 3 adantl D ∞Met X A J fLim F F Fil J
5 1 mopnuni D ∞Met X X = J
6 5 adantr D ∞Met X A J fLim F X = J
7 6 fveq2d D ∞Met X A J fLim F Fil X = Fil J
8 4 7 eleqtrrd D ∞Met X A J fLim F F Fil X
9 2 flimelbas A J fLim F A J
10 9 ad2antlr D ∞Met X A J fLim F x + A J
11 5 ad2antrr D ∞Met X A J fLim F x + X = J
12 10 11 eleqtrrd D ∞Met X A J fLim F x + A X
13 simplr D ∞Met X A J fLim F x + A J fLim F
14 1 mopntop D ∞Met X J Top
15 14 ad2antrr D ∞Met X A J fLim F x + J Top
16 simpll D ∞Met X A J fLim F x + D ∞Met X
17 rpxr x + x *
18 17 adantl D ∞Met X A J fLim F x + x *
19 1 blopn D ∞Met X A X x * A ball D x J
20 16 12 18 19 syl3anc D ∞Met X A J fLim F x + A ball D x J
21 simpr D ∞Met X A J fLim F x + x +
22 blcntr D ∞Met X A X x + A A ball D x
23 16 12 21 22 syl3anc D ∞Met X A J fLim F x + A A ball D x
24 opnneip J Top A ball D x J A A ball D x A ball D x nei J A
25 15 20 23 24 syl3anc D ∞Met X A J fLim F x + A ball D x nei J A
26 flimnei A J fLim F A ball D x nei J A A ball D x F
27 13 25 26 syl2anc D ∞Met X A J fLim F x + A ball D x F
28 oveq1 y = A y ball D x = A ball D x
29 28 eleq1d y = A y ball D x F A ball D x F
30 29 rspcev A X A ball D x F y X y ball D x F
31 12 27 30 syl2anc D ∞Met X A J fLim F x + y X y ball D x F
32 31 ralrimiva D ∞Met X A J fLim F x + y X y ball D x F
33 iscfil3 D ∞Met X F CauFil D F Fil X x + y X y ball D x F
34 33 adantr D ∞Met X A J fLim F F CauFil D F Fil X x + y X y ball D x F
35 8 32 34 mpbir2and D ∞Met X A J fLim F F CauFil D