Metamath Proof Explorer


Theorem flimclsi

Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion flimclsi S F J fLim F cls J S

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 flimfil x J fLim F F Fil J
3 2 ad2antlr S F x J fLim F y nei J x F Fil J
4 flimnei x J fLim F y nei J x y F
5 4 adantll S F x J fLim F y nei J x y F
6 simpll S F x J fLim F y nei J x S F
7 filinn0 F Fil J y F S F y S
8 3 5 6 7 syl3anc S F x J fLim F y nei J x y S
9 8 ralrimiva S F x J fLim F y nei J x y S
10 flimtop x J fLim F J Top
11 10 adantl S F x J fLim F J Top
12 filelss F Fil J S F S J
13 12 ancoms S F F Fil J S J
14 2 13 sylan2 S F x J fLim F S J
15 1 flimelbas x J fLim F x J
16 15 adantl S F x J fLim F x J
17 1 neindisj2 J Top S J x J x cls J S y nei J x y S
18 11 14 16 17 syl3anc S F x J fLim F x cls J S y nei J x y S
19 9 18 mpbird S F x J fLim F x cls J S
20 19 ex S F x J fLim F x cls J S
21 20 ssrdv S F J fLim F cls J S