Metamath Proof Explorer


Theorem flimclslem

Description: Lemma for flimcls . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimcls.2 F = X filGen fi nei J A S
Assertion flimclslem J TopOn X S X A cls J S F Fil X S F A J fLim F

Proof

Step Hyp Ref Expression
1 flimcls.2 F = X filGen fi nei J A S
2 topontop J TopOn X J Top
3 2 3ad2ant1 J TopOn X S X A cls J S J Top
4 eqid J = J
5 4 neisspw J Top nei J A 𝒫 J
6 3 5 syl J TopOn X S X A cls J S nei J A 𝒫 J
7 toponuni J TopOn X X = J
8 7 3ad2ant1 J TopOn X S X A cls J S X = J
9 8 pweqd J TopOn X S X A cls J S 𝒫 X = 𝒫 J
10 6 9 sseqtrrd J TopOn X S X A cls J S nei J A 𝒫 X
11 toponmax J TopOn X X J
12 elpw2g X J S 𝒫 X S X
13 11 12 syl J TopOn X S 𝒫 X S X
14 13 biimpar J TopOn X S X S 𝒫 X
15 14 3adant3 J TopOn X S X A cls J S S 𝒫 X
16 15 snssd J TopOn X S X A cls J S S 𝒫 X
17 10 16 unssd J TopOn X S X A cls J S nei J A S 𝒫 X
18 ssun2 S nei J A S
19 11 3ad2ant1 J TopOn X S X A cls J S X J
20 simp2 J TopOn X S X A cls J S S X
21 19 20 ssexd J TopOn X S X A cls J S S V
22 21 snn0d J TopOn X S X A cls J S S
23 ssn0 S nei J A S S nei J A S
24 18 22 23 sylancr J TopOn X S X A cls J S nei J A S
25 20 8 sseqtrd J TopOn X S X A cls J S S J
26 simp3 J TopOn X S X A cls J S A cls J S
27 4 neindisj J Top S J A cls J S x nei J A x S
28 27 expr J Top S J A cls J S x nei J A x S
29 3 25 26 28 syl21anc J TopOn X S X A cls J S x nei J A x S
30 29 imp J TopOn X S X A cls J S x nei J A x S
31 elsni y S y = S
32 31 ineq2d y S x y = x S
33 32 neeq1d y S x y x S
34 30 33 syl5ibrcom J TopOn X S X A cls J S x nei J A y S x y
35 34 ralrimiv J TopOn X S X A cls J S x nei J A y S x y
36 35 ralrimiva J TopOn X S X A cls J S x nei J A y S x y
37 simp1 J TopOn X S X A cls J S J TopOn X
38 4 clsss3 J Top S J cls J S J
39 3 25 38 syl2anc J TopOn X S X A cls J S cls J S J
40 39 26 sseldd J TopOn X S X A cls J S A J
41 40 8 eleqtrrd J TopOn X S X A cls J S A X
42 41 snssd J TopOn X S X A cls J S A X
43 snnzg A cls J S A
44 43 3ad2ant3 J TopOn X S X A cls J S A
45 neifil J TopOn X A X A nei J A Fil X
46 37 42 44 45 syl3anc J TopOn X S X A cls J S nei J A Fil X
47 filfbas nei J A Fil X nei J A fBas X
48 46 47 syl J TopOn X S X A cls J S nei J A fBas X
49 ne0i A cls J S cls J S
50 49 3ad2ant3 J TopOn X S X A cls J S cls J S
51 cls0 J Top cls J =
52 3 51 syl J TopOn X S X A cls J S cls J =
53 50 52 neeqtrrd J TopOn X S X A cls J S cls J S cls J
54 fveq2 S = cls J S = cls J
55 54 necon3i cls J S cls J S
56 53 55 syl J TopOn X S X A cls J S S
57 snfbas S X S X J S fBas X
58 20 56 19 57 syl3anc J TopOn X S X A cls J S S fBas X
59 fbunfip nei J A fBas X S fBas X ¬ fi nei J A S x nei J A y S x y
60 48 58 59 syl2anc J TopOn X S X A cls J S ¬ fi nei J A S x nei J A y S x y
61 36 60 mpbird J TopOn X S X A cls J S ¬ fi nei J A S
62 fsubbas X J fi nei J A S fBas X nei J A S 𝒫 X nei J A S ¬ fi nei J A S
63 19 62 syl J TopOn X S X A cls J S fi nei J A S fBas X nei J A S 𝒫 X nei J A S ¬ fi nei J A S
64 17 24 61 63 mpbir3and J TopOn X S X A cls J S fi nei J A S fBas X
65 fgcl fi nei J A S fBas X X filGen fi nei J A S Fil X
66 64 65 syl J TopOn X S X A cls J S X filGen fi nei J A S Fil X
67 1 66 eqeltrid J TopOn X S X A cls J S F Fil X
68 fvex nei J A V
69 snex S V
70 68 69 unex nei J A S V
71 ssfii nei J A S V nei J A S fi nei J A S
72 70 71 ax-mp nei J A S fi nei J A S
73 ssfg fi nei J A S fBas X fi nei J A S X filGen fi nei J A S
74 64 73 syl J TopOn X S X A cls J S fi nei J A S X filGen fi nei J A S
75 74 1 sseqtrrdi J TopOn X S X A cls J S fi nei J A S F
76 72 75 sstrid J TopOn X S X A cls J S nei J A S F
77 snssg S V S nei J A S S nei J A S
78 21 77 syl J TopOn X S X A cls J S S nei J A S S nei J A S
79 18 78 mpbiri J TopOn X S X A cls J S S nei J A S
80 76 79 sseldd J TopOn X S X A cls J S S F
81 76 unssad J TopOn X S X A cls J S nei J A F
82 elflim J TopOn X F Fil X A J fLim F A X nei J A F
83 37 67 82 syl2anc J TopOn X S X A cls J S A J fLim F A X nei J A F
84 41 81 83 mpbir2and J TopOn X S X A cls J S A J fLim F
85 67 80 84 3jca J TopOn X S X A cls J S F Fil X S F A J fLim F