Step |
Hyp |
Ref |
Expression |
1 |
|
flimcls.2 |
|
2 |
|
topontop |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
eqid |
|
5 |
4
|
neisspw |
|
6 |
3 5
|
syl |
|
7 |
|
toponuni |
|
8 |
7
|
3ad2ant1 |
|
9 |
8
|
pweqd |
|
10 |
6 9
|
sseqtrrd |
|
11 |
|
toponmax |
|
12 |
|
elpw2g |
|
13 |
11 12
|
syl |
|
14 |
13
|
biimpar |
|
15 |
14
|
3adant3 |
|
16 |
15
|
snssd |
|
17 |
10 16
|
unssd |
|
18 |
|
ssun2 |
|
19 |
11
|
3ad2ant1 |
|
20 |
|
simp2 |
|
21 |
19 20
|
ssexd |
|
22 |
21
|
snn0d |
|
23 |
|
ssn0 |
|
24 |
18 22 23
|
sylancr |
|
25 |
20 8
|
sseqtrd |
|
26 |
|
simp3 |
|
27 |
4
|
neindisj |
|
28 |
27
|
expr |
|
29 |
3 25 26 28
|
syl21anc |
|
30 |
29
|
imp |
|
31 |
|
elsni |
|
32 |
31
|
ineq2d |
|
33 |
32
|
neeq1d |
|
34 |
30 33
|
syl5ibrcom |
|
35 |
34
|
ralrimiv |
|
36 |
35
|
ralrimiva |
|
37 |
|
simp1 |
|
38 |
4
|
clsss3 |
|
39 |
3 25 38
|
syl2anc |
|
40 |
39 26
|
sseldd |
|
41 |
40 8
|
eleqtrrd |
|
42 |
41
|
snssd |
|
43 |
|
snnzg |
|
44 |
43
|
3ad2ant3 |
|
45 |
|
neifil |
|
46 |
37 42 44 45
|
syl3anc |
|
47 |
|
filfbas |
|
48 |
46 47
|
syl |
|
49 |
|
ne0i |
|
50 |
49
|
3ad2ant3 |
|
51 |
|
cls0 |
|
52 |
3 51
|
syl |
|
53 |
50 52
|
neeqtrrd |
|
54 |
|
fveq2 |
|
55 |
54
|
necon3i |
|
56 |
53 55
|
syl |
|
57 |
|
snfbas |
|
58 |
20 56 19 57
|
syl3anc |
|
59 |
|
fbunfip |
|
60 |
48 58 59
|
syl2anc |
|
61 |
36 60
|
mpbird |
|
62 |
|
fsubbas |
|
63 |
19 62
|
syl |
|
64 |
17 24 61 63
|
mpbir3and |
|
65 |
|
fgcl |
|
66 |
64 65
|
syl |
|
67 |
1 66
|
eqeltrid |
|
68 |
|
fvex |
|
69 |
|
snex |
|
70 |
68 69
|
unex |
|
71 |
|
ssfii |
|
72 |
70 71
|
ax-mp |
|
73 |
|
ssfg |
|
74 |
64 73
|
syl |
|
75 |
74 1
|
sseqtrrdi |
|
76 |
72 75
|
sstrid |
|
77 |
|
snssg |
|
78 |
21 77
|
syl |
|
79 |
18 78
|
mpbiri |
|
80 |
76 79
|
sseldd |
|
81 |
76
|
unssad |
|
82 |
|
elflim |
|
83 |
37 67 82
|
syl2anc |
|
84 |
41 81 83
|
mpbir2and |
|
85 |
67 80 84
|
3jca |
|