Metamath Proof Explorer


Theorem flimfcls

Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion flimfcls J fLim F J fClus F

Proof

Step Hyp Ref Expression
1 flimtop a J fLim F J Top
2 eqid J = J
3 2 flimfil a J fLim F F Fil J
4 flimclsi x F J fLim F cls J x
5 4 sseld x F a J fLim F a cls J x
6 5 com12 a J fLim F x F a cls J x
7 6 ralrimiv a J fLim F x F a cls J x
8 2 isfcls a J fClus F J Top F Fil J x F a cls J x
9 1 3 7 8 syl3anbrc a J fLim F a J fClus F
10 9 ssriv J fLim F J fClus F