Metamath Proof Explorer


Theorem flimfil

Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimuni.1 X = J
Assertion flimfil A J fLim F F Fil X

Proof

Step Hyp Ref Expression
1 flimuni.1 X = J
2 1 elflim2 A J fLim F J Top F ran Fil F 𝒫 X A X nei J A F
3 2 simplbi A J fLim F J Top F ran Fil F 𝒫 X
4 3 simp2d A J fLim F F ran Fil
5 filunirn F ran Fil F Fil F
6 4 5 sylib A J fLim F F Fil F
7 3 simp3d A J fLim F F 𝒫 X
8 sspwuni F 𝒫 X F X
9 7 8 sylib A J fLim F F X
10 flimneiss A J fLim F nei J A F
11 flimtop A J fLim F J Top
12 1 topopn J Top X J
13 11 12 syl A J fLim F X J
14 1 flimelbas A J fLim F A X
15 opnneip J Top X J A X X nei J A
16 11 13 14 15 syl3anc A J fLim F X nei J A
17 10 16 sseldd A J fLim F X F
18 elssuni X F X F
19 17 18 syl A J fLim F X F
20 9 19 eqssd A J fLim F F = X
21 20 fveq2d A J fLim F Fil F = Fil X
22 6 21 eleqtrd A J fLim F F Fil X