| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimfnfcls.x |
|
| 2 |
|
flimfcls |
|
| 3 |
|
flimtop |
|
| 4 |
1
|
toptopon |
|
| 5 |
3 4
|
sylib |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
|
simpr |
|
| 9 |
|
flimss2 |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
|
simpll |
|
| 12 |
10 11
|
sseldd |
|
| 13 |
2 12
|
sselid |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
ralrimiva |
|
| 16 |
|
sseq2 |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
eleq2d |
|
| 19 |
16 18
|
imbi12d |
|
| 20 |
19
|
rspcv |
|
| 21 |
|
ssid |
|
| 22 |
|
id |
|
| 23 |
21 22
|
mpi |
|
| 24 |
|
fclstop |
|
| 25 |
1
|
fclselbas |
|
| 26 |
24 25
|
jca |
|
| 27 |
23 26
|
syl |
|
| 28 |
20 27
|
syl6 |
|
| 29 |
|
disjdif |
|
| 30 |
|
simpll |
|
| 31 |
|
simplrl |
|
| 32 |
1
|
topopn |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
pwexg |
|
| 35 |
|
rabexg |
|
| 36 |
33 34 35
|
3syl |
|
| 37 |
|
unexg |
|
| 38 |
30 36 37
|
syl2anc |
|
| 39 |
|
ssfii |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
filsspw |
|
| 42 |
|
ssrab2 |
|
| 43 |
42
|
a1i |
|
| 44 |
41 43
|
unssd |
|
| 45 |
44
|
ad2antrr |
|
| 46 |
|
ssun2 |
|
| 47 |
|
sseq2 |
|
| 48 |
|
difss |
|
| 49 |
|
elpw2g |
|
| 50 |
33 49
|
syl |
|
| 51 |
48 50
|
mpbiri |
|
| 52 |
|
ssid |
|
| 53 |
52
|
a1i |
|
| 54 |
47 51 53
|
elrabd |
|
| 55 |
46 54
|
sselid |
|
| 56 |
55
|
ne0d |
|
| 57 |
|
sseq2 |
|
| 58 |
57
|
elrab |
|
| 59 |
58
|
simprbi |
|
| 60 |
59
|
ad2antll |
|
| 61 |
|
sslin |
|
| 62 |
60 61
|
syl |
|
| 63 |
|
simprrr |
|
| 64 |
63
|
adantr |
|
| 65 |
|
inssdif0 |
|
| 66 |
|
simplll |
|
| 67 |
|
simprl |
|
| 68 |
|
filelss |
|
| 69 |
66 67 68
|
syl2anc |
|
| 70 |
|
dfss2 |
|
| 71 |
69 70
|
sylib |
|
| 72 |
71
|
sseq1d |
|
| 73 |
30
|
ad2antrr |
|
| 74 |
|
simplrl |
|
| 75 |
|
elssuni |
|
| 76 |
75 1
|
sseqtrrdi |
|
| 77 |
76
|
ad2antrl |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
|
simpr |
|
| 80 |
|
filss |
|
| 81 |
73 74 78 79 80
|
syl13anc |
|
| 82 |
81
|
ex |
|
| 83 |
72 82
|
sylbid |
|
| 84 |
65 83
|
biimtrrid |
|
| 85 |
84
|
necon3bd |
|
| 86 |
64 85
|
mpd |
|
| 87 |
|
ssn0 |
|
| 88 |
62 86 87
|
syl2anc |
|
| 89 |
88
|
ralrimivva |
|
| 90 |
|
filfbas |
|
| 91 |
30 90
|
syl |
|
| 92 |
48
|
a1i |
|
| 93 |
|
filtop |
|
| 94 |
30 93
|
syl |
|
| 95 |
|
eleq1 |
|
| 96 |
94 95
|
syl5ibrcom |
|
| 97 |
96
|
necon3bd |
|
| 98 |
63 97
|
mpd |
|
| 99 |
|
pssdifn0 |
|
| 100 |
77 98 99
|
syl2anc |
|
| 101 |
|
supfil |
|
| 102 |
33 92 100 101
|
syl3anc |
|
| 103 |
|
filfbas |
|
| 104 |
102 103
|
syl |
|
| 105 |
|
fbunfip |
|
| 106 |
91 104 105
|
syl2anc |
|
| 107 |
89 106
|
mpbird |
|
| 108 |
|
fsubbas |
|
| 109 |
94 108
|
syl |
|
| 110 |
45 56 107 109
|
mpbir3and |
|
| 111 |
|
ssfg |
|
| 112 |
110 111
|
syl |
|
| 113 |
40 112
|
sstrd |
|
| 114 |
113
|
unssad |
|
| 115 |
|
fgcl |
|
| 116 |
110 115
|
syl |
|
| 117 |
|
sseq2 |
|
| 118 |
|
oveq2 |
|
| 119 |
118
|
eleq2d |
|
| 120 |
117 119
|
imbi12d |
|
| 121 |
120
|
rspcv |
|
| 122 |
116 121
|
syl |
|
| 123 |
114 122
|
mpid |
|
| 124 |
|
simpr |
|
| 125 |
|
simplrl |
|
| 126 |
|
simprrl |
|
| 127 |
126
|
adantr |
|
| 128 |
113 55
|
sseldd |
|
| 129 |
128
|
adantr |
|
| 130 |
|
fclsopni |
|
| 131 |
124 125 127 129 130
|
syl13anc |
|
| 132 |
131
|
ex |
|
| 133 |
123 132
|
syld |
|
| 134 |
133
|
necon2bd |
|
| 135 |
29 134
|
mpi |
|
| 136 |
135
|
anassrs |
|
| 137 |
136
|
expr |
|
| 138 |
137
|
con4d |
|
| 139 |
138
|
ex |
|
| 140 |
139
|
com23 |
|
| 141 |
140
|
ralrimdva |
|
| 142 |
|
simprr |
|
| 143 |
141 142
|
jctild |
|
| 144 |
|
simprl |
|
| 145 |
144 4
|
sylib |
|
| 146 |
|
simpl |
|
| 147 |
|
flimopn |
|
| 148 |
145 146 147
|
syl2anc |
|
| 149 |
143 148
|
sylibrd |
|
| 150 |
149
|
ex |
|
| 151 |
150
|
com23 |
|
| 152 |
28 151
|
mpdd |
|
| 153 |
15 152
|
impbid2 |
|