Metamath Proof Explorer


Theorem flimfnfcls

Description: A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim , this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis flimfnfcls.x X = J
Assertion flimfnfcls F Fil X A J fLim F g Fil X F g A J fClus g

Proof

Step Hyp Ref Expression
1 flimfnfcls.x X = J
2 flimfcls J fLim g J fClus g
3 flimtop A J fLim F J Top
4 1 toptopon J Top J TopOn X
5 3 4 sylib A J fLim F J TopOn X
6 5 ad2antrr A J fLim F g Fil X F g J TopOn X
7 simplr A J fLim F g Fil X F g g Fil X
8 simpr A J fLim F g Fil X F g F g
9 flimss2 J TopOn X g Fil X F g J fLim F J fLim g
10 6 7 8 9 syl3anc A J fLim F g Fil X F g J fLim F J fLim g
11 simpll A J fLim F g Fil X F g A J fLim F
12 10 11 sseldd A J fLim F g Fil X F g A J fLim g
13 2 12 sselid A J fLim F g Fil X F g A J fClus g
14 13 ex A J fLim F g Fil X F g A J fClus g
15 14 ralrimiva A J fLim F g Fil X F g A J fClus g
16 sseq2 g = F F g F F
17 oveq2 g = F J fClus g = J fClus F
18 17 eleq2d g = F A J fClus g A J fClus F
19 16 18 imbi12d g = F F g A J fClus g F F A J fClus F
20 19 rspcv F Fil X g Fil X F g A J fClus g F F A J fClus F
21 ssid F F
22 id F F A J fClus F F F A J fClus F
23 21 22 mpi F F A J fClus F A J fClus F
24 fclstop A J fClus F J Top
25 1 fclselbas A J fClus F A X
26 24 25 jca A J fClus F J Top A X
27 23 26 syl F F A J fClus F J Top A X
28 20 27 syl6 F Fil X g Fil X F g A J fClus g J Top A X
29 disjdif o X o =
30 simpll F Fil X J Top A X o J A o ¬ o F F Fil X
31 simplrl F Fil X J Top A X o J A o ¬ o F J Top
32 1 topopn J Top X J
33 31 32 syl F Fil X J Top A X o J A o ¬ o F X J
34 pwexg X J 𝒫 X V
35 rabexg 𝒫 X V x 𝒫 X | X o x V
36 33 34 35 3syl F Fil X J Top A X o J A o ¬ o F x 𝒫 X | X o x V
37 unexg F Fil X x 𝒫 X | X o x V F x 𝒫 X | X o x V
38 30 36 37 syl2anc F Fil X J Top A X o J A o ¬ o F F x 𝒫 X | X o x V
39 ssfii F x 𝒫 X | X o x V F x 𝒫 X | X o x fi F x 𝒫 X | X o x
40 38 39 syl F Fil X J Top A X o J A o ¬ o F F x 𝒫 X | X o x fi F x 𝒫 X | X o x
41 filsspw F Fil X F 𝒫 X
42 ssrab2 x 𝒫 X | X o x 𝒫 X
43 42 a1i F Fil X x 𝒫 X | X o x 𝒫 X
44 41 43 unssd F Fil X F x 𝒫 X | X o x 𝒫 X
45 44 ad2antrr F Fil X J Top A X o J A o ¬ o F F x 𝒫 X | X o x 𝒫 X
46 ssun2 x 𝒫 X | X o x F x 𝒫 X | X o x
47 sseq2 x = X o X o x X o X o
48 difss X o X
49 elpw2g X J X o 𝒫 X X o X
50 33 49 syl F Fil X J Top A X o J A o ¬ o F X o 𝒫 X X o X
51 48 50 mpbiri F Fil X J Top A X o J A o ¬ o F X o 𝒫 X
52 ssid X o X o
53 52 a1i F Fil X J Top A X o J A o ¬ o F X o X o
54 47 51 53 elrabd F Fil X J Top A X o J A o ¬ o F X o x 𝒫 X | X o x
55 46 54 sselid F Fil X J Top A X o J A o ¬ o F X o F x 𝒫 X | X o x
56 55 ne0d F Fil X J Top A X o J A o ¬ o F F x 𝒫 X | X o x
57 sseq2 x = z X o x X o z
58 57 elrab z x 𝒫 X | X o x z 𝒫 X X o z
59 58 simprbi z x 𝒫 X | X o x X o z
60 59 ad2antll F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x X o z
61 sslin X o z y X o y z
62 60 61 syl F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X o y z
63 simprrr F Fil X J Top A X o J A o ¬ o F ¬ o F
64 63 adantr F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x ¬ o F
65 inssdif0 y X o y X o =
66 simplll F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x F Fil X
67 simprl F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y F
68 filelss F Fil X y F y X
69 66 67 68 syl2anc F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X
70 df-ss y X y X = y
71 69 70 sylib F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X = y
72 71 sseq1d F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X o y o
73 30 ad2antrr F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o F Fil X
74 simplrl F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o y F
75 elssuni o J o J
76 75 1 sseqtrrdi o J o X
77 76 ad2antrl F Fil X J Top A X o J A o ¬ o F o X
78 77 ad2antrr F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o o X
79 simpr F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o y o
80 filss F Fil X y F o X y o o F
81 73 74 78 79 80 syl13anc F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o o F
82 81 ex F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y o o F
83 72 82 sylbid F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X o o F
84 65 83 syl5bir F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X o = o F
85 84 necon3bd F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x ¬ o F y X o
86 64 85 mpd F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y X o
87 ssn0 y X o y z y X o y z
88 62 86 87 syl2anc F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y z
89 88 ralrimivva F Fil X J Top A X o J A o ¬ o F y F z x 𝒫 X | X o x y z
90 filfbas F Fil X F fBas X
91 30 90 syl F Fil X J Top A X o J A o ¬ o F F fBas X
92 48 a1i F Fil X J Top A X o J A o ¬ o F X o X
93 filtop F Fil X X F
94 30 93 syl F Fil X J Top A X o J A o ¬ o F X F
95 eleq1 o = X o F X F
96 94 95 syl5ibrcom F Fil X J Top A X o J A o ¬ o F o = X o F
97 96 necon3bd F Fil X J Top A X o J A o ¬ o F ¬ o F o X
98 63 97 mpd F Fil X J Top A X o J A o ¬ o F o X
99 pssdifn0 o X o X X o
100 77 98 99 syl2anc F Fil X J Top A X o J A o ¬ o F X o
101 supfil X J X o X X o x 𝒫 X | X o x Fil X
102 33 92 100 101 syl3anc F Fil X J Top A X o J A o ¬ o F x 𝒫 X | X o x Fil X
103 filfbas x 𝒫 X | X o x Fil X x 𝒫 X | X o x fBas X
104 102 103 syl F Fil X J Top A X o J A o ¬ o F x 𝒫 X | X o x fBas X
105 fbunfip F fBas X x 𝒫 X | X o x fBas X ¬ fi F x 𝒫 X | X o x y F z x 𝒫 X | X o x y z
106 91 104 105 syl2anc F Fil X J Top A X o J A o ¬ o F ¬ fi F x 𝒫 X | X o x y F z x 𝒫 X | X o x y z
107 89 106 mpbird F Fil X J Top A X o J A o ¬ o F ¬ fi F x 𝒫 X | X o x
108 fsubbas X F fi F x 𝒫 X | X o x fBas X F x 𝒫 X | X o x 𝒫 X F x 𝒫 X | X o x ¬ fi F x 𝒫 X | X o x
109 94 108 syl F Fil X J Top A X o J A o ¬ o F fi F x 𝒫 X | X o x fBas X F x 𝒫 X | X o x 𝒫 X F x 𝒫 X | X o x ¬ fi F x 𝒫 X | X o x
110 45 56 107 109 mpbir3and F Fil X J Top A X o J A o ¬ o F fi F x 𝒫 X | X o x fBas X
111 ssfg fi F x 𝒫 X | X o x fBas X fi F x 𝒫 X | X o x X filGen fi F x 𝒫 X | X o x
112 110 111 syl F Fil X J Top A X o J A o ¬ o F fi F x 𝒫 X | X o x X filGen fi F x 𝒫 X | X o x
113 40 112 sstrd F Fil X J Top A X o J A o ¬ o F F x 𝒫 X | X o x X filGen fi F x 𝒫 X | X o x
114 113 unssad F Fil X J Top A X o J A o ¬ o F F X filGen fi F x 𝒫 X | X o x
115 fgcl fi F x 𝒫 X | X o x fBas X X filGen fi F x 𝒫 X | X o x Fil X
116 110 115 syl F Fil X J Top A X o J A o ¬ o F X filGen fi F x 𝒫 X | X o x Fil X
117 sseq2 g = X filGen fi F x 𝒫 X | X o x F g F X filGen fi F x 𝒫 X | X o x
118 oveq2 g = X filGen fi F x 𝒫 X | X o x J fClus g = J fClus X filGen fi F x 𝒫 X | X o x
119 118 eleq2d g = X filGen fi F x 𝒫 X | X o x A J fClus g A J fClus X filGen fi F x 𝒫 X | X o x
120 117 119 imbi12d g = X filGen fi F x 𝒫 X | X o x F g A J fClus g F X filGen fi F x 𝒫 X | X o x A J fClus X filGen fi F x 𝒫 X | X o x
121 120 rspcv X filGen fi F x 𝒫 X | X o x Fil X g Fil X F g A J fClus g F X filGen fi F x 𝒫 X | X o x A J fClus X filGen fi F x 𝒫 X | X o x
122 116 121 syl F Fil X J Top A X o J A o ¬ o F g Fil X F g A J fClus g F X filGen fi F x 𝒫 X | X o x A J fClus X filGen fi F x 𝒫 X | X o x
123 114 122 mpid F Fil X J Top A X o J A o ¬ o F g Fil X F g A J fClus g A J fClus X filGen fi F x 𝒫 X | X o x
124 simpr F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x A J fClus X filGen fi F x 𝒫 X | X o x
125 simplrl F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x o J
126 simprrl F Fil X J Top A X o J A o ¬ o F A o
127 126 adantr F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x A o
128 113 55 sseldd F Fil X J Top A X o J A o ¬ o F X o X filGen fi F x 𝒫 X | X o x
129 128 adantr F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x X o X filGen fi F x 𝒫 X | X o x
130 fclsopni A J fClus X filGen fi F x 𝒫 X | X o x o J A o X o X filGen fi F x 𝒫 X | X o x o X o
131 124 125 127 129 130 syl13anc F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x o X o
132 131 ex F Fil X J Top A X o J A o ¬ o F A J fClus X filGen fi F x 𝒫 X | X o x o X o
133 123 132 syld F Fil X J Top A X o J A o ¬ o F g Fil X F g A J fClus g o X o
134 133 necon2bd F Fil X J Top A X o J A o ¬ o F o X o = ¬ g Fil X F g A J fClus g
135 29 134 mpi F Fil X J Top A X o J A o ¬ o F ¬ g Fil X F g A J fClus g
136 135 anassrs F Fil X J Top A X o J A o ¬ o F ¬ g Fil X F g A J fClus g
137 136 expr F Fil X J Top A X o J A o ¬ o F ¬ g Fil X F g A J fClus g
138 137 con4d F Fil X J Top A X o J A o g Fil X F g A J fClus g o F
139 138 ex F Fil X J Top A X o J A o g Fil X F g A J fClus g o F
140 139 com23 F Fil X J Top A X o J g Fil X F g A J fClus g A o o F
141 140 ralrimdva F Fil X J Top A X g Fil X F g A J fClus g o J A o o F
142 simprr F Fil X J Top A X A X
143 141 142 jctild F Fil X J Top A X g Fil X F g A J fClus g A X o J A o o F
144 simprl F Fil X J Top A X J Top
145 144 4 sylib F Fil X J Top A X J TopOn X
146 simpl F Fil X J Top A X F Fil X
147 flimopn J TopOn X F Fil X A J fLim F A X o J A o o F
148 145 146 147 syl2anc F Fil X J Top A X A J fLim F A X o J A o o F
149 143 148 sylibrd F Fil X J Top A X g Fil X F g A J fClus g A J fLim F
150 149 ex F Fil X J Top A X g Fil X F g A J fClus g A J fLim F
151 150 com23 F Fil X g Fil X F g A J fClus g J Top A X A J fLim F
152 28 151 mpdd F Fil X g Fil X F g A J fClus g A J fLim F
153 15 152 impbid2 F Fil X A J fLim F g Fil X F g A J fClus g