Step |
Hyp |
Ref |
Expression |
1 |
|
flimfnfcls.x |
|
2 |
|
flimfcls |
|
3 |
|
flimtop |
|
4 |
1
|
toptopon |
|
5 |
3 4
|
sylib |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplr |
|
8 |
|
simpr |
|
9 |
|
flimss2 |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
|
simpll |
|
12 |
10 11
|
sseldd |
|
13 |
2 12
|
sselid |
|
14 |
13
|
ex |
|
15 |
14
|
ralrimiva |
|
16 |
|
sseq2 |
|
17 |
|
oveq2 |
|
18 |
17
|
eleq2d |
|
19 |
16 18
|
imbi12d |
|
20 |
19
|
rspcv |
|
21 |
|
ssid |
|
22 |
|
id |
|
23 |
21 22
|
mpi |
|
24 |
|
fclstop |
|
25 |
1
|
fclselbas |
|
26 |
24 25
|
jca |
|
27 |
23 26
|
syl |
|
28 |
20 27
|
syl6 |
|
29 |
|
disjdif |
|
30 |
|
simpll |
|
31 |
|
simplrl |
|
32 |
1
|
topopn |
|
33 |
31 32
|
syl |
|
34 |
|
pwexg |
|
35 |
|
rabexg |
|
36 |
33 34 35
|
3syl |
|
37 |
|
unexg |
|
38 |
30 36 37
|
syl2anc |
|
39 |
|
ssfii |
|
40 |
38 39
|
syl |
|
41 |
|
filsspw |
|
42 |
|
ssrab2 |
|
43 |
42
|
a1i |
|
44 |
41 43
|
unssd |
|
45 |
44
|
ad2antrr |
|
46 |
|
ssun2 |
|
47 |
|
sseq2 |
|
48 |
|
difss |
|
49 |
|
elpw2g |
|
50 |
33 49
|
syl |
|
51 |
48 50
|
mpbiri |
|
52 |
|
ssid |
|
53 |
52
|
a1i |
|
54 |
47 51 53
|
elrabd |
|
55 |
46 54
|
sselid |
|
56 |
55
|
ne0d |
|
57 |
|
sseq2 |
|
58 |
57
|
elrab |
|
59 |
58
|
simprbi |
|
60 |
59
|
ad2antll |
|
61 |
|
sslin |
|
62 |
60 61
|
syl |
|
63 |
|
simprrr |
|
64 |
63
|
adantr |
|
65 |
|
inssdif0 |
|
66 |
|
simplll |
|
67 |
|
simprl |
|
68 |
|
filelss |
|
69 |
66 67 68
|
syl2anc |
|
70 |
|
df-ss |
|
71 |
69 70
|
sylib |
|
72 |
71
|
sseq1d |
|
73 |
30
|
ad2antrr |
|
74 |
|
simplrl |
|
75 |
|
elssuni |
|
76 |
75 1
|
sseqtrrdi |
|
77 |
76
|
ad2antrl |
|
78 |
77
|
ad2antrr |
|
79 |
|
simpr |
|
80 |
|
filss |
|
81 |
73 74 78 79 80
|
syl13anc |
|
82 |
81
|
ex |
|
83 |
72 82
|
sylbid |
|
84 |
65 83
|
syl5bir |
|
85 |
84
|
necon3bd |
|
86 |
64 85
|
mpd |
|
87 |
|
ssn0 |
|
88 |
62 86 87
|
syl2anc |
|
89 |
88
|
ralrimivva |
|
90 |
|
filfbas |
|
91 |
30 90
|
syl |
|
92 |
48
|
a1i |
|
93 |
|
filtop |
|
94 |
30 93
|
syl |
|
95 |
|
eleq1 |
|
96 |
94 95
|
syl5ibrcom |
|
97 |
96
|
necon3bd |
|
98 |
63 97
|
mpd |
|
99 |
|
pssdifn0 |
|
100 |
77 98 99
|
syl2anc |
|
101 |
|
supfil |
|
102 |
33 92 100 101
|
syl3anc |
|
103 |
|
filfbas |
|
104 |
102 103
|
syl |
|
105 |
|
fbunfip |
|
106 |
91 104 105
|
syl2anc |
|
107 |
89 106
|
mpbird |
|
108 |
|
fsubbas |
|
109 |
94 108
|
syl |
|
110 |
45 56 107 109
|
mpbir3and |
|
111 |
|
ssfg |
|
112 |
110 111
|
syl |
|
113 |
40 112
|
sstrd |
|
114 |
113
|
unssad |
|
115 |
|
fgcl |
|
116 |
110 115
|
syl |
|
117 |
|
sseq2 |
|
118 |
|
oveq2 |
|
119 |
118
|
eleq2d |
|
120 |
117 119
|
imbi12d |
|
121 |
120
|
rspcv |
|
122 |
116 121
|
syl |
|
123 |
114 122
|
mpid |
|
124 |
|
simpr |
|
125 |
|
simplrl |
|
126 |
|
simprrl |
|
127 |
126
|
adantr |
|
128 |
113 55
|
sseldd |
|
129 |
128
|
adantr |
|
130 |
|
fclsopni |
|
131 |
124 125 127 129 130
|
syl13anc |
|
132 |
131
|
ex |
|
133 |
123 132
|
syld |
|
134 |
133
|
necon2bd |
|
135 |
29 134
|
mpi |
|
136 |
135
|
anassrs |
|
137 |
136
|
expr |
|
138 |
137
|
con4d |
|
139 |
138
|
ex |
|
140 |
139
|
com23 |
|
141 |
140
|
ralrimdva |
|
142 |
|
simprr |
|
143 |
141 142
|
jctild |
|
144 |
|
simprl |
|
145 |
144 4
|
sylib |
|
146 |
|
simpl |
|
147 |
|
flimopn |
|
148 |
145 146 147
|
syl2anc |
|
149 |
143 148
|
sylibrd |
|
150 |
149
|
ex |
|
151 |
150
|
com23 |
|
152 |
28 151
|
mpdd |
|
153 |
15 152
|
impbid2 |
|