Metamath Proof Explorer


Theorem flimsncls

Description: If A is a limit point of the filter F , then all the points which specialize A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Assertion flimsncls A J fLim F cls J A J fLim F

Proof

Step Hyp Ref Expression
1 flimtop A J fLim F J Top
2 eqid J = J
3 2 flimelbas A J fLim F A J
4 3 snssd A J fLim F A J
5 2 clsss3 J Top A J cls J A J
6 1 4 5 syl2anc A J fLim F cls J A J
7 6 sselda A J fLim F x cls J A x J
8 simpll A J fLim F x cls J A y J x y A J fLim F
9 8 1 syl A J fLim F x cls J A y J x y J Top
10 simprl A J fLim F x cls J A y J x y y J
11 1 adantr A J fLim F x cls J A J Top
12 4 adantr A J fLim F x cls J A A J
13 simpr A J fLim F x cls J A x cls J A
14 11 12 13 3jca A J fLim F x cls J A J Top A J x cls J A
15 2 clsndisj J Top A J x cls J A y J x y y A
16 disjsn y A = ¬ A y
17 16 necon2abii A y y A
18 15 17 sylibr J Top A J x cls J A y J x y A y
19 14 18 sylan A J fLim F x cls J A y J x y A y
20 opnneip J Top y J A y y nei J A
21 9 10 19 20 syl3anc A J fLim F x cls J A y J x y y nei J A
22 flimnei A J fLim F y nei J A y F
23 8 21 22 syl2anc A J fLim F x cls J A y J x y y F
24 23 expr A J fLim F x cls J A y J x y y F
25 24 ralrimiva A J fLim F x cls J A y J x y y F
26 toptopon2 J Top J TopOn J
27 11 26 sylib A J fLim F x cls J A J TopOn J
28 2 flimfil A J fLim F F Fil J
29 28 adantr A J fLim F x cls J A F Fil J
30 flimopn J TopOn J F Fil J x J fLim F x J y J x y y F
31 27 29 30 syl2anc A J fLim F x cls J A x J fLim F x J y J x y y F
32 7 25 31 mpbir2and A J fLim F x cls J A x J fLim F
33 32 ex A J fLim F x cls J A x J fLim F
34 33 ssrdv A J fLim F cls J A J fLim F