Metamath Proof Explorer


Theorem flimss1

Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion flimss1 J TopOn X F Fil X J K K fLim F J fLim F

Proof

Step Hyp Ref Expression
1 eqid K = K
2 1 flimelbas x K fLim F x K
3 2 adantl J TopOn X F Fil X J K x K fLim F x K
4 simpl2 J TopOn X F Fil X J K x K fLim F F Fil X
5 filunibas F Fil X F = X
6 4 5 syl J TopOn X F Fil X J K x K fLim F F = X
7 1 flimfil x K fLim F F Fil K
8 7 adantl J TopOn X F Fil X J K x K fLim F F Fil K
9 filunibas F Fil K F = K
10 8 9 syl J TopOn X F Fil X J K x K fLim F F = K
11 6 10 eqtr3d J TopOn X F Fil X J K x K fLim F X = K
12 3 11 eleqtrrd J TopOn X F Fil X J K x K fLim F x X
13 simpl1 J TopOn X F Fil X J K x K fLim F J TopOn X
14 topontop J TopOn X J Top
15 13 14 syl J TopOn X F Fil X J K x K fLim F J Top
16 flimtop x K fLim F K Top
17 16 adantl J TopOn X F Fil X J K x K fLim F K Top
18 toponuni J TopOn X X = J
19 13 18 syl J TopOn X F Fil X J K x K fLim F X = J
20 19 11 eqtr3d J TopOn X F Fil X J K x K fLim F J = K
21 simpl3 J TopOn X F Fil X J K x K fLim F J K
22 eqid J = J
23 22 1 topssnei J Top K Top J = K J K nei J x nei K x
24 15 17 20 21 23 syl31anc J TopOn X F Fil X J K x K fLim F nei J x nei K x
25 flimneiss x K fLim F nei K x F
26 25 adantl J TopOn X F Fil X J K x K fLim F nei K x F
27 24 26 sstrd J TopOn X F Fil X J K x K fLim F nei J x F
28 elflim J TopOn X F Fil X x J fLim F x X nei J x F
29 13 4 28 syl2anc J TopOn X F Fil X J K x K fLim F x J fLim F x X nei J x F
30 12 27 29 mpbir2and J TopOn X F Fil X J K x K fLim F x J fLim F
31 30 ex J TopOn X F Fil X J K x K fLim F x J fLim F
32 31 ssrdv J TopOn X F Fil X J K K fLim F J fLim F