Metamath Proof Explorer


Theorem flimss2

Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion flimss2 J TopOn X F Fil X G F J fLim G J fLim F

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 flimelbas x J fLim G x J
3 2 adantl J TopOn X F Fil X G F x J fLim G x J
4 simpl1 J TopOn X F Fil X G F x J fLim G J TopOn X
5 toponuni J TopOn X X = J
6 4 5 syl J TopOn X F Fil X G F x J fLim G X = J
7 3 6 eleqtrrd J TopOn X F Fil X G F x J fLim G x X
8 flimneiss x J fLim G nei J x G
9 8 adantl J TopOn X F Fil X G F x J fLim G nei J x G
10 simpl3 J TopOn X F Fil X G F x J fLim G G F
11 9 10 sstrd J TopOn X F Fil X G F x J fLim G nei J x F
12 simpl2 J TopOn X F Fil X G F x J fLim G F Fil X
13 elflim J TopOn X F Fil X x J fLim F x X nei J x F
14 4 12 13 syl2anc J TopOn X F Fil X G F x J fLim G x J fLim F x X nei J x F
15 7 11 14 mpbir2and J TopOn X F Fil X G F x J fLim G x J fLim F
16 15 ex J TopOn X F Fil X G F x J fLim G x J fLim F
17 16 ssrdv J TopOn X F Fil X G F J fLim G J fLim F