Metamath Proof Explorer


Theorem fllelt

Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion fllelt A A A A < A + 1

Proof

Step Hyp Ref Expression
1 flval A A = ι x | x A A < x + 1
2 1 eqcomd A ι x | x A A < x + 1 = A
3 flcl A A
4 rebtwnz A ∃! x x A A < x + 1
5 breq1 x = A x A A A
6 oveq1 x = A x + 1 = A + 1
7 6 breq2d x = A A < x + 1 A < A + 1
8 5 7 anbi12d x = A x A A < x + 1 A A A < A + 1
9 8 riota2 A ∃! x x A A < x + 1 A A A < A + 1 ι x | x A A < x + 1 = A
10 3 4 9 syl2anc A A A A < A + 1 ι x | x A A < x + 1 = A
11 2 10 mpbird A A A A < A + 1