Metamath Proof Explorer


Theorem fllep1

Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion fllep1 A A A + 1

Proof

Step Hyp Ref Expression
1 flltp1 A A < A + 1
2 reflcl A A
3 peano2re A A + 1
4 2 3 syl A A + 1
5 ltle A A + 1 A < A + 1 A A + 1
6 4 5 mpdan A A < A + 1 A A + 1
7 1 6 mpd A A A + 1