Metamath Proof Explorer


Theorem fllt

Description: The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion fllt A B A < B A < B

Proof

Step Hyp Ref Expression
1 flge A B B A B A
2 zre B B
3 lenlt B A B A ¬ A < B
4 2 3 sylan B A B A ¬ A < B
5 4 ancoms A B B A ¬ A < B
6 reflcl A A
7 lenlt B A B A ¬ A < B
8 2 6 7 syl2anr A B B A ¬ A < B
9 1 5 8 3bitr3d A B ¬ A < B ¬ A < B
10 9 con4bid A B A < B A < B