Metamath Proof Explorer


Theorem flltdivnn0lt

Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion flltdivnn0lt K 0 N 0 L K < N K L < N L

Proof

Step Hyp Ref Expression
1 nn0nndivcl K 0 L K L
2 reflcl K L K L
3 1 2 syl K 0 L K L
4 3 3adant2 K 0 N 0 L K L
5 1 3adant2 K 0 N 0 L K L
6 nn0nndivcl N 0 L N L
7 6 3adant1 K 0 N 0 L N L
8 4 5 7 3jca K 0 N 0 L K L K L N L
9 8 adantr K 0 N 0 L K < N K L K L N L
10 fldivnn0le K 0 L K L K L
11 10 3adant2 K 0 N 0 L K L K L
12 11 adantr K 0 N 0 L K < N K L K L
13 simpr K 0 N 0 L K < N K < N
14 nn0re K 0 K
15 nn0re N 0 N
16 nnre L L
17 nngt0 L 0 < L
18 16 17 jca L L 0 < L
19 14 15 18 3anim123i K 0 N 0 L K N L 0 < L
20 19 adantr K 0 N 0 L K < N K N L 0 < L
21 ltdiv1 K N L 0 < L K < N K L < N L
22 20 21 syl K 0 N 0 L K < N K < N K L < N L
23 13 22 mpbid K 0 N 0 L K < N K L < N L
24 12 23 jca K 0 N 0 L K < N K L K L K L < N L
25 lelttr K L K L N L K L K L K L < N L K L < N L
26 9 24 25 sylc K 0 N 0 L K < N K L < N L
27 26 ex K 0 N 0 L K < N K L < N L