Metamath Proof Explorer


Theorem flltnz

Description: The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion flltnz A ¬ A A < A

Proof

Step Hyp Ref Expression
1 reflcl A A
2 1 adantr A ¬ A A
3 simpl A ¬ A A
4 fllelt A A A A < A + 1
5 4 adantr A ¬ A A A A < A + 1
6 5 simpld A ¬ A A A
7 simpr A ¬ A ¬ A
8 flidz A A = A A
9 8 adantr A ¬ A A = A A
10 7 9 mtbird A ¬ A ¬ A = A
11 10 neqned A ¬ A A A
12 11 necomd A ¬ A A A
13 2 3 6 12 leneltd A ¬ A A < A