Metamath Proof Explorer


Theorem flmod

Description: The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion flmod A A = A A mod 1

Proof

Step Hyp Ref Expression
1 modfrac A A mod 1 = A A
2 1 oveq2d A A A mod 1 = A A A
3 recn A A
4 reflcl A A
5 4 recnd A A
6 3 5 nncand A A A A = A
7 2 6 eqtr2d A A = A A mod 1