Metamath Proof Explorer


Theorem flodddiv4lt

Description: The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion flodddiv4lt N ¬ 2 N N 4 < N 4

Proof

Step Hyp Ref Expression
1 simpl N ¬ 2 N N
2 4z 4
3 4ne0 4 0
4 2 3 pm3.2i 4 4 0
5 4 a1i N ¬ 2 N 4 4 0
6 4dvdseven 4 N 2 N
7 6 con3i ¬ 2 N ¬ 4 N
8 7 adantl N ¬ 2 N ¬ 4 N
9 fldivndvdslt N 4 4 0 ¬ 4 N N 4 < N 4
10 1 5 8 9 syl3anc N ¬ 2 N N 4 < N 4