Metamath Proof Explorer


Theorem flodddiv4t2lthalf

Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion flodddiv4t2lthalf N ¬ 2 N N 4 2 < N 2

Proof

Step Hyp Ref Expression
1 flodddiv4lt N ¬ 2 N N 4 < N 4
2 zre N N
3 4re 4
4 3 a1i N 4
5 4ne0 4 0
6 5 a1i N 4 0
7 2 4 6 redivcld N N 4
8 7 flcld N N 4
9 8 zred N N 4
10 2rp 2 +
11 10 a1i N 2 +
12 9 7 11 ltmul1d N N 4 < N 4 N 4 2 < N 4 2
13 12 adantr N ¬ 2 N N 4 < N 4 N 4 2 < N 4 2
14 1 13 mpbid N ¬ 2 N N 4 2 < N 4 2
15 zcn N N
16 15 halfcld N N 2
17 2cnd N 2
18 2ne0 2 0
19 18 a1i N 2 0
20 16 17 19 divcan1d N N 2 2 2 = N 2
21 2cnne0 2 2 0
22 21 a1i N 2 2 0
23 divdiv1 N 2 2 0 2 2 0 N 2 2 = N 2 2
24 15 22 22 23 syl3anc N N 2 2 = N 2 2
25 2t2e4 2 2 = 4
26 25 a1i N 2 2 = 4
27 26 oveq2d N N 2 2 = N 4
28 24 27 eqtrd N N 2 2 = N 4
29 28 oveq1d N N 2 2 2 = N 4 2
30 20 29 eqtr3d N N 2 = N 4 2
31 30 adantr N ¬ 2 N N 2 = N 4 2
32 14 31 breqtrrd N ¬ 2 N N 4 2 < N 2