Metamath Proof Explorer


Theorem fmfg

Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis elfm2.l L = Y filGen B
Assertion fmfg X C B fBas Y F : Y X X FilMap F B = X FilMap F L

Proof

Step Hyp Ref Expression
1 elfm2.l L = Y filGen B
2 1 elfm2 X C B fBas Y F : Y X x X FilMap F B x X s L F s x
3 fgcl B fBas Y Y filGen B Fil Y
4 1 3 eqeltrid B fBas Y L Fil Y
5 filfbas L Fil Y L fBas Y
6 4 5 syl B fBas Y L fBas Y
7 elfm X C L fBas Y F : Y X x X FilMap F L x X s L F s x
8 6 7 syl3an2 X C B fBas Y F : Y X x X FilMap F L x X s L F s x
9 2 8 bitr4d X C B fBas Y F : Y X x X FilMap F B x X FilMap F L
10 9 eqrdv X C B fBas Y F : Y X X FilMap F B = X FilMap F L