Metamath Proof Explorer


Theorem fmfnfmlem1

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φ B fBas Y
fmfnfm.l φ L Fil X
fmfnfm.f φ F : Y X
fmfnfm.fm φ X FilMap F B L
Assertion fmfnfmlem1 φ s fi B F s t t X t L

Proof

Step Hyp Ref Expression
1 fmfnfm.b φ B fBas Y
2 fmfnfm.l φ L Fil X
3 fmfnfm.f φ F : Y X
4 fmfnfm.fm φ X FilMap F B L
5 fbssfi B fBas Y s fi B w B w s
6 1 5 sylan φ s fi B w B w s
7 sstr2 F w F s F s t F w t
8 imass2 w s F w F s
9 7 8 syl11 F s t w s F w t
10 9 reximdv F s t w B w s w B F w t
11 6 10 syl5com φ s fi B F s t w B F w t
12 filtop L Fil X X L
13 2 12 syl φ X L
14 elfm X L B fBas Y F : Y X t X FilMap F B t X w B F w t
15 13 1 3 14 syl3anc φ t X FilMap F B t X w B F w t
16 4 sseld φ t X FilMap F B t L
17 15 16 sylbird φ t X w B F w t t L
18 17 expcomd φ w B F w t t X t L
19 18 adantr φ s fi B w B F w t t X t L
20 11 19 syld φ s fi B F s t t X t L
21 20 ex φ s fi B F s t t X t L