Metamath Proof Explorer


Theorem fmfnfmlem3

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φ B fBas Y
fmfnfm.l φ L Fil X
fmfnfm.f φ F : Y X
fmfnfm.fm φ X FilMap F B L
Assertion fmfnfmlem3 φ fi ran x L F -1 x = ran x L F -1 x

Proof

Step Hyp Ref Expression
1 fmfnfm.b φ B fBas Y
2 fmfnfm.l φ L Fil X
3 fmfnfm.f φ F : Y X
4 fmfnfm.fm φ X FilMap F B L
5 filin L Fil X y L z L y z L
6 5 3expb L Fil X y L z L y z L
7 2 6 sylan φ y L z L y z L
8 ffun F : Y X Fun F
9 funcnvcnv Fun F Fun F -1 -1
10 imain Fun F -1 -1 F -1 y z = F -1 y F -1 z
11 10 eqcomd Fun F -1 -1 F -1 y F -1 z = F -1 y z
12 3 8 9 11 4syl φ F -1 y F -1 z = F -1 y z
13 12 adantr φ y L z L F -1 y F -1 z = F -1 y z
14 imaeq2 x = y z F -1 x = F -1 y z
15 14 rspceeqv y z L F -1 y F -1 z = F -1 y z x L F -1 y F -1 z = F -1 x
16 7 13 15 syl2anc φ y L z L x L F -1 y F -1 z = F -1 x
17 ineq12 s = F -1 y t = F -1 z s t = F -1 y F -1 z
18 17 eqeq1d s = F -1 y t = F -1 z s t = F -1 x F -1 y F -1 z = F -1 x
19 18 rexbidv s = F -1 y t = F -1 z x L s t = F -1 x x L F -1 y F -1 z = F -1 x
20 16 19 syl5ibrcom φ y L z L s = F -1 y t = F -1 z x L s t = F -1 x
21 20 rexlimdvva φ y L z L s = F -1 y t = F -1 z x L s t = F -1 x
22 imaeq2 x = y F -1 x = F -1 y
23 22 eqeq2d x = y s = F -1 x s = F -1 y
24 23 cbvrexvw x L s = F -1 x y L s = F -1 y
25 imaeq2 x = z F -1 x = F -1 z
26 25 eqeq2d x = z t = F -1 x t = F -1 z
27 26 cbvrexvw x L t = F -1 x z L t = F -1 z
28 24 27 anbi12i x L s = F -1 x x L t = F -1 x y L s = F -1 y z L t = F -1 z
29 eqid x L F -1 x = x L F -1 x
30 29 elrnmpt s V s ran x L F -1 x x L s = F -1 x
31 30 elv s ran x L F -1 x x L s = F -1 x
32 29 elrnmpt t V t ran x L F -1 x x L t = F -1 x
33 32 elv t ran x L F -1 x x L t = F -1 x
34 31 33 anbi12i s ran x L F -1 x t ran x L F -1 x x L s = F -1 x x L t = F -1 x
35 reeanv y L z L s = F -1 y t = F -1 z y L s = F -1 y z L t = F -1 z
36 28 34 35 3bitr4i s ran x L F -1 x t ran x L F -1 x y L z L s = F -1 y t = F -1 z
37 vex s V
38 37 inex1 s t V
39 29 elrnmpt s t V s t ran x L F -1 x x L s t = F -1 x
40 38 39 ax-mp s t ran x L F -1 x x L s t = F -1 x
41 21 36 40 3imtr4g φ s ran x L F -1 x t ran x L F -1 x s t ran x L F -1 x
42 41 ralrimivv φ s ran x L F -1 x t ran x L F -1 x s t ran x L F -1 x
43 mptexg L Fil X x L F -1 x V
44 rnexg x L F -1 x V ran x L F -1 x V
45 inficl ran x L F -1 x V s ran x L F -1 x t ran x L F -1 x s t ran x L F -1 x fi ran x L F -1 x = ran x L F -1 x
46 2 43 44 45 4syl φ s ran x L F -1 x t ran x L F -1 x s t ran x L F -1 x fi ran x L F -1 x = ran x L F -1 x
47 42 46 mpbid φ fi ran x L F -1 x = ran x L F -1 x