| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b |  | 
						
							| 2 |  | fmfnfm.l |  | 
						
							| 3 |  | fmfnfm.f |  | 
						
							| 4 |  | fmfnfm.fm |  | 
						
							| 5 |  | filelss |  | 
						
							| 6 | 5 | ex |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 |  | mptexg |  | 
						
							| 9 |  | rnexg |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 |  | unexg |  | 
						
							| 13 | 1 11 12 | syl2anc |  | 
						
							| 14 |  | ssfii |  | 
						
							| 15 | 14 | unssbd |  | 
						
							| 16 | 13 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | imaeq2 |  | 
						
							| 20 | 19 | rspceeqv |  | 
						
							| 21 | 18 20 | mpan2 |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | elfvdm |  | 
						
							| 24 | 1 23 | syl |  | 
						
							| 25 |  | cnvimass |  | 
						
							| 26 | 25 3 | fssdm |  | 
						
							| 27 | 24 26 | ssexd |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 | elrnmpt |  | 
						
							| 31 | 28 30 | syl |  | 
						
							| 32 | 22 31 | mpbird |  | 
						
							| 33 | 17 32 | sseldd |  | 
						
							| 34 |  | ffun |  | 
						
							| 35 |  | ssid |  | 
						
							| 36 |  | funimass2 |  | 
						
							| 37 | 34 35 36 | sylancl |  | 
						
							| 38 | 3 37 | syl |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | imaeq2 |  | 
						
							| 41 | 40 | sseq1d |  | 
						
							| 42 | 41 | rspcev |  | 
						
							| 43 | 33 39 42 | syl2anc |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 | 7 44 | jcad |  | 
						
							| 46 |  | elfiun |  | 
						
							| 47 | 1 11 46 | syl2anc |  | 
						
							| 48 | 1 2 3 4 | fmfnfmlem1 |  | 
						
							| 49 | 1 2 3 4 | fmfnfmlem3 |  | 
						
							| 50 | 49 | eleq2d |  | 
						
							| 51 | 29 | elrnmpt |  | 
						
							| 52 | 51 | elv |  | 
						
							| 53 | 1 2 3 4 | fmfnfmlem2 |  | 
						
							| 54 | 52 53 | biimtrid |  | 
						
							| 55 | 50 54 | sylbid |  | 
						
							| 56 | 49 | eleq2d |  | 
						
							| 57 | 29 | elrnmpt |  | 
						
							| 58 | 57 | elv |  | 
						
							| 59 | 56 58 | bitrdi |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 |  | fbssfi |  | 
						
							| 62 | 1 61 | sylan |  | 
						
							| 63 | 2 | ad3antrrr |  | 
						
							| 64 | 2 | adantr |  | 
						
							| 65 | 4 | adantr |  | 
						
							| 66 |  | filtop |  | 
						
							| 67 | 2 66 | syl |  | 
						
							| 68 | 67 1 3 | 3jca |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 |  | ssfg |  | 
						
							| 71 | 1 70 | syl |  | 
						
							| 72 | 71 | sselda |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 73 | imaelfm |  | 
						
							| 75 | 69 72 74 | syl2anc |  | 
						
							| 76 | 65 75 | sseldd |  | 
						
							| 77 | 76 | adantrr |  | 
						
							| 78 | 64 77 | jca |  | 
						
							| 79 |  | filin |  | 
						
							| 80 | 79 | 3expa |  | 
						
							| 81 | 78 80 | sylan |  | 
						
							| 82 | 81 | adantr |  | 
						
							| 83 |  | simprr |  | 
						
							| 84 |  | elin |  | 
						
							| 85 | 3 34 | syl |  | 
						
							| 86 |  | fvelima |  | 
						
							| 87 | 86 | ex |  | 
						
							| 88 | 85 87 | syl |  | 
						
							| 89 | 88 | ad3antrrr |  | 
						
							| 90 | 85 | ad3antrrr |  | 
						
							| 91 |  | simplrr |  | 
						
							| 92 |  | simprl |  | 
						
							| 93 |  | ssel2 |  | 
						
							| 94 | 91 92 93 | syl2an |  | 
						
							| 95 | 85 | ad2antrr |  | 
						
							| 96 |  | fbelss |  | 
						
							| 97 | 1 96 | sylan |  | 
						
							| 98 | 3 | fdmd |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 97 99 | sseqtrrd |  | 
						
							| 101 | 100 | adantrr |  | 
						
							| 102 | 101 | sselda |  | 
						
							| 103 |  | fvimacnv |  | 
						
							| 104 | 95 102 103 | syl2anc |  | 
						
							| 105 | 104 | biimpd |  | 
						
							| 106 | 105 | impr |  | 
						
							| 107 | 106 | ad2ant2rl |  | 
						
							| 108 | 94 107 | elind |  | 
						
							| 109 |  | inss2 |  | 
						
							| 110 |  | cnvimass |  | 
						
							| 111 | 109 110 | sstri |  | 
						
							| 112 |  | funfvima2 |  | 
						
							| 113 | 111 112 | mpan2 |  | 
						
							| 114 | 90 108 113 | sylc |  | 
						
							| 115 | 114 | anassrs |  | 
						
							| 116 | 115 | expr |  | 
						
							| 117 |  | eleq1 |  | 
						
							| 118 |  | eleq1 |  | 
						
							| 119 | 117 118 | imbi12d |  | 
						
							| 120 | 116 119 | syl5ibcom |  | 
						
							| 121 | 120 | rexlimdva |  | 
						
							| 122 | 89 121 | syld |  | 
						
							| 123 | 122 | impd |  | 
						
							| 124 | 84 123 | biimtrid |  | 
						
							| 125 | 124 | adantrl |  | 
						
							| 126 | 125 | ssrdv |  | 
						
							| 127 |  | simprl |  | 
						
							| 128 | 126 127 | sstrd |  | 
						
							| 129 |  | filss |  | 
						
							| 130 | 63 82 83 128 129 | syl13anc |  | 
						
							| 131 | 130 | exp32 |  | 
						
							| 132 |  | ineq2 |  | 
						
							| 133 | 132 | imaeq2d |  | 
						
							| 134 | 133 | sseq1d |  | 
						
							| 135 | 134 | imbi1d |  | 
						
							| 136 | 131 135 | syl5ibrcom |  | 
						
							| 137 | 136 | rexlimdva |  | 
						
							| 138 | 137 | rexlimdvaa |  | 
						
							| 139 | 138 | imp |  | 
						
							| 140 | 62 139 | syldan |  | 
						
							| 141 | 60 140 | sylbid |  | 
						
							| 142 | 141 | impr |  | 
						
							| 143 |  | imaeq2 |  | 
						
							| 144 | 143 | sseq1d |  | 
						
							| 145 | 144 | imbi1d |  | 
						
							| 146 | 142 145 | syl5ibrcom |  | 
						
							| 147 | 146 | rexlimdvva |  | 
						
							| 148 | 48 55 147 | 3jaod |  | 
						
							| 149 | 47 148 | sylbid |  | 
						
							| 150 | 149 | rexlimdv |  | 
						
							| 151 | 150 | impcomd |  | 
						
							| 152 | 45 151 | impbid |  |