Step |
Hyp |
Ref |
Expression |
1 |
|
fmfnfm.b |
|
2 |
|
fmfnfm.l |
|
3 |
|
fmfnfm.f |
|
4 |
|
fmfnfm.fm |
|
5 |
|
filelss |
|
6 |
5
|
ex |
|
7 |
2 6
|
syl |
|
8 |
|
mptexg |
|
9 |
|
rnexg |
|
10 |
8 9
|
syl |
|
11 |
2 10
|
syl |
|
12 |
|
unexg |
|
13 |
1 11 12
|
syl2anc |
|
14 |
|
ssfii |
|
15 |
14
|
unssbd |
|
16 |
13 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
eqid |
|
19 |
|
imaeq2 |
|
20 |
19
|
rspceeqv |
|
21 |
18 20
|
mpan2 |
|
22 |
21
|
adantl |
|
23 |
|
elfvdm |
|
24 |
1 23
|
syl |
|
25 |
|
cnvimass |
|
26 |
25 3
|
fssdm |
|
27 |
24 26
|
ssexd |
|
28 |
27
|
adantr |
|
29 |
|
eqid |
|
30 |
29
|
elrnmpt |
|
31 |
28 30
|
syl |
|
32 |
22 31
|
mpbird |
|
33 |
17 32
|
sseldd |
|
34 |
|
ffun |
|
35 |
|
ssid |
|
36 |
|
funimass2 |
|
37 |
34 35 36
|
sylancl |
|
38 |
3 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
|
imaeq2 |
|
41 |
40
|
sseq1d |
|
42 |
41
|
rspcev |
|
43 |
33 39 42
|
syl2anc |
|
44 |
43
|
ex |
|
45 |
7 44
|
jcad |
|
46 |
|
elfiun |
|
47 |
1 11 46
|
syl2anc |
|
48 |
1 2 3 4
|
fmfnfmlem1 |
|
49 |
1 2 3 4
|
fmfnfmlem3 |
|
50 |
49
|
eleq2d |
|
51 |
29
|
elrnmpt |
|
52 |
51
|
elv |
|
53 |
1 2 3 4
|
fmfnfmlem2 |
|
54 |
52 53
|
syl5bi |
|
55 |
50 54
|
sylbid |
|
56 |
49
|
eleq2d |
|
57 |
29
|
elrnmpt |
|
58 |
57
|
elv |
|
59 |
56 58
|
bitrdi |
|
60 |
59
|
adantr |
|
61 |
|
fbssfi |
|
62 |
1 61
|
sylan |
|
63 |
2
|
ad3antrrr |
|
64 |
2
|
adantr |
|
65 |
4
|
adantr |
|
66 |
|
filtop |
|
67 |
2 66
|
syl |
|
68 |
67 1 3
|
3jca |
|
69 |
68
|
adantr |
|
70 |
|
ssfg |
|
71 |
1 70
|
syl |
|
72 |
71
|
sselda |
|
73 |
|
eqid |
|
74 |
73
|
imaelfm |
|
75 |
69 72 74
|
syl2anc |
|
76 |
65 75
|
sseldd |
|
77 |
76
|
adantrr |
|
78 |
64 77
|
jca |
|
79 |
|
filin |
|
80 |
79
|
3expa |
|
81 |
78 80
|
sylan |
|
82 |
81
|
adantr |
|
83 |
|
simprr |
|
84 |
|
elin |
|
85 |
3 34
|
syl |
|
86 |
|
fvelima |
|
87 |
86
|
ex |
|
88 |
85 87
|
syl |
|
89 |
88
|
ad3antrrr |
|
90 |
85
|
ad3antrrr |
|
91 |
|
simplrr |
|
92 |
|
simprl |
|
93 |
|
ssel2 |
|
94 |
91 92 93
|
syl2an |
|
95 |
85
|
ad2antrr |
|
96 |
|
fbelss |
|
97 |
1 96
|
sylan |
|
98 |
3
|
fdmd |
|
99 |
98
|
adantr |
|
100 |
97 99
|
sseqtrrd |
|
101 |
100
|
adantrr |
|
102 |
101
|
sselda |
|
103 |
|
fvimacnv |
|
104 |
95 102 103
|
syl2anc |
|
105 |
104
|
biimpd |
|
106 |
105
|
impr |
|
107 |
106
|
ad2ant2rl |
|
108 |
94 107
|
elind |
|
109 |
|
inss2 |
|
110 |
|
cnvimass |
|
111 |
109 110
|
sstri |
|
112 |
|
funfvima2 |
|
113 |
111 112
|
mpan2 |
|
114 |
90 108 113
|
sylc |
|
115 |
114
|
anassrs |
|
116 |
115
|
expr |
|
117 |
|
eleq1 |
|
118 |
|
eleq1 |
|
119 |
117 118
|
imbi12d |
|
120 |
116 119
|
syl5ibcom |
|
121 |
120
|
rexlimdva |
|
122 |
89 121
|
syld |
|
123 |
122
|
impd |
|
124 |
84 123
|
syl5bi |
|
125 |
124
|
adantrl |
|
126 |
125
|
ssrdv |
|
127 |
|
simprl |
|
128 |
126 127
|
sstrd |
|
129 |
|
filss |
|
130 |
63 82 83 128 129
|
syl13anc |
|
131 |
130
|
exp32 |
|
132 |
|
ineq2 |
|
133 |
132
|
imaeq2d |
|
134 |
133
|
sseq1d |
|
135 |
134
|
imbi1d |
|
136 |
131 135
|
syl5ibrcom |
|
137 |
136
|
rexlimdva |
|
138 |
137
|
rexlimdvaa |
|
139 |
138
|
imp |
|
140 |
62 139
|
syldan |
|
141 |
60 140
|
sylbid |
|
142 |
141
|
impr |
|
143 |
|
imaeq2 |
|
144 |
143
|
sseq1d |
|
145 |
144
|
imbi1d |
|
146 |
142 145
|
syl5ibrcom |
|
147 |
146
|
rexlimdvva |
|
148 |
48 55 147
|
3jaod |
|
149 |
47 148
|
sylbid |
|
150 |
149
|
rexlimdv |
|
151 |
150
|
impcomd |
|
152 |
45 151
|
impbid |
|