Metamath Proof Explorer


Theorem fmfnfmlem4

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φ B fBas Y
fmfnfm.l φ L Fil X
fmfnfm.f φ F : Y X
fmfnfm.fm φ X FilMap F B L
Assertion fmfnfmlem4 φ t L t X s fi B ran x L F -1 x F s t

Proof

Step Hyp Ref Expression
1 fmfnfm.b φ B fBas Y
2 fmfnfm.l φ L Fil X
3 fmfnfm.f φ F : Y X
4 fmfnfm.fm φ X FilMap F B L
5 filelss L Fil X t L t X
6 5 ex L Fil X t L t X
7 2 6 syl φ t L t X
8 mptexg L Fil X x L F -1 x V
9 rnexg x L F -1 x V ran x L F -1 x V
10 8 9 syl L Fil X ran x L F -1 x V
11 2 10 syl φ ran x L F -1 x V
12 unexg B fBas Y ran x L F -1 x V B ran x L F -1 x V
13 1 11 12 syl2anc φ B ran x L F -1 x V
14 ssfii B ran x L F -1 x V B ran x L F -1 x fi B ran x L F -1 x
15 14 unssbd B ran x L F -1 x V ran x L F -1 x fi B ran x L F -1 x
16 13 15 syl φ ran x L F -1 x fi B ran x L F -1 x
17 16 adantr φ t L ran x L F -1 x fi B ran x L F -1 x
18 eqid F -1 t = F -1 t
19 imaeq2 x = t F -1 x = F -1 t
20 19 rspceeqv t L F -1 t = F -1 t x L F -1 t = F -1 x
21 18 20 mpan2 t L x L F -1 t = F -1 x
22 21 adantl φ t L x L F -1 t = F -1 x
23 elfvdm B fBas Y Y dom fBas
24 1 23 syl φ Y dom fBas
25 cnvimass F -1 t dom F
26 25 3 fssdm φ F -1 t Y
27 24 26 ssexd φ F -1 t V
28 27 adantr φ t L F -1 t V
29 eqid x L F -1 x = x L F -1 x
30 29 elrnmpt F -1 t V F -1 t ran x L F -1 x x L F -1 t = F -1 x
31 28 30 syl φ t L F -1 t ran x L F -1 x x L F -1 t = F -1 x
32 22 31 mpbird φ t L F -1 t ran x L F -1 x
33 17 32 sseldd φ t L F -1 t fi B ran x L F -1 x
34 ffun F : Y X Fun F
35 ssid F -1 t F -1 t
36 funimass2 Fun F F -1 t F -1 t F F -1 t t
37 34 35 36 sylancl F : Y X F F -1 t t
38 3 37 syl φ F F -1 t t
39 38 adantr φ t L F F -1 t t
40 imaeq2 s = F -1 t F s = F F -1 t
41 40 sseq1d s = F -1 t F s t F F -1 t t
42 41 rspcev F -1 t fi B ran x L F -1 x F F -1 t t s fi B ran x L F -1 x F s t
43 33 39 42 syl2anc φ t L s fi B ran x L F -1 x F s t
44 43 ex φ t L s fi B ran x L F -1 x F s t
45 7 44 jcad φ t L t X s fi B ran x L F -1 x F s t
46 elfiun B fBas Y ran x L F -1 x V s fi B ran x L F -1 x s fi B s fi ran x L F -1 x z fi B w fi ran x L F -1 x s = z w
47 1 11 46 syl2anc φ s fi B ran x L F -1 x s fi B s fi ran x L F -1 x z fi B w fi ran x L F -1 x s = z w
48 1 2 3 4 fmfnfmlem1 φ s fi B F s t t X t L
49 1 2 3 4 fmfnfmlem3 φ fi ran x L F -1 x = ran x L F -1 x
50 49 eleq2d φ s fi ran x L F -1 x s ran x L F -1 x
51 29 elrnmpt s V s ran x L F -1 x x L s = F -1 x
52 51 elv s ran x L F -1 x x L s = F -1 x
53 1 2 3 4 fmfnfmlem2 φ x L s = F -1 x F s t t X t L
54 52 53 syl5bi φ s ran x L F -1 x F s t t X t L
55 50 54 sylbid φ s fi ran x L F -1 x F s t t X t L
56 49 eleq2d φ w fi ran x L F -1 x w ran x L F -1 x
57 29 elrnmpt w V w ran x L F -1 x x L w = F -1 x
58 57 elv w ran x L F -1 x x L w = F -1 x
59 56 58 bitrdi φ w fi ran x L F -1 x x L w = F -1 x
60 59 adantr φ z fi B w fi ran x L F -1 x x L w = F -1 x
61 fbssfi B fBas Y z fi B s B s z
62 1 61 sylan φ z fi B s B s z
63 2 ad3antrrr φ s B s z x L F z F -1 x t t X L Fil X
64 2 adantr φ s B s z L Fil X
65 4 adantr φ s B X FilMap F B L
66 filtop L Fil X X L
67 2 66 syl φ X L
68 67 1 3 3jca φ X L B fBas Y F : Y X
69 68 adantr φ s B X L B fBas Y F : Y X
70 ssfg B fBas Y B Y filGen B
71 1 70 syl φ B Y filGen B
72 71 sselda φ s B s Y filGen B
73 eqid Y filGen B = Y filGen B
74 73 imaelfm X L B fBas Y F : Y X s Y filGen B F s X FilMap F B
75 69 72 74 syl2anc φ s B F s X FilMap F B
76 65 75 sseldd φ s B F s L
77 76 adantrr φ s B s z F s L
78 64 77 jca φ s B s z L Fil X F s L
79 filin L Fil X F s L x L F s x L
80 79 3expa L Fil X F s L x L F s x L
81 78 80 sylan φ s B s z x L F s x L
82 81 adantr φ s B s z x L F z F -1 x t t X F s x L
83 simprr φ s B s z x L F z F -1 x t t X t X
84 elin w F s x w F s w x
85 3 34 syl φ Fun F
86 fvelima Fun F w F s y s F y = w
87 86 ex Fun F w F s y s F y = w
88 85 87 syl φ w F s y s F y = w
89 88 ad3antrrr φ s B s z x L t X w F s y s F y = w
90 85 ad3antrrr φ s B s z x L t X y s F y x Fun F
91 simplrr φ s B s z x L s z
92 simprl t X y s F y x y s
93 ssel2 s z y s y z
94 91 92 93 syl2an φ s B s z x L t X y s F y x y z
95 85 ad2antrr φ s B s z y s Fun F
96 fbelss B fBas Y s B s Y
97 1 96 sylan φ s B s Y
98 3 fdmd φ dom F = Y
99 98 adantr φ s B dom F = Y
100 97 99 sseqtrrd φ s B s dom F
101 100 adantrr φ s B s z s dom F
102 101 sselda φ s B s z y s y dom F
103 fvimacnv Fun F y dom F F y x y F -1 x
104 95 102 103 syl2anc φ s B s z y s F y x y F -1 x
105 104 biimpd φ s B s z y s F y x y F -1 x
106 105 impr φ s B s z y s F y x y F -1 x
107 106 ad2ant2rl φ s B s z x L t X y s F y x y F -1 x
108 94 107 elind φ s B s z x L t X y s F y x y z F -1 x
109 inss2 z F -1 x F -1 x
110 cnvimass F -1 x dom F
111 109 110 sstri z F -1 x dom F
112 funfvima2 Fun F z F -1 x dom F y z F -1 x F y F z F -1 x
113 111 112 mpan2 Fun F y z F -1 x F y F z F -1 x
114 90 108 113 sylc φ s B s z x L t X y s F y x F y F z F -1 x
115 114 anassrs φ s B s z x L t X y s F y x F y F z F -1 x
116 115 expr φ s B s z x L t X y s F y x F y F z F -1 x
117 eleq1 F y = w F y x w x
118 eleq1 F y = w F y F z F -1 x w F z F -1 x
119 117 118 imbi12d F y = w F y x F y F z F -1 x w x w F z F -1 x
120 116 119 syl5ibcom φ s B s z x L t X y s F y = w w x w F z F -1 x
121 120 rexlimdva φ s B s z x L t X y s F y = w w x w F z F -1 x
122 89 121 syld φ s B s z x L t X w F s w x w F z F -1 x
123 122 impd φ s B s z x L t X w F s w x w F z F -1 x
124 84 123 syl5bi φ s B s z x L t X w F s x w F z F -1 x
125 124 adantrl φ s B s z x L F z F -1 x t t X w F s x w F z F -1 x
126 125 ssrdv φ s B s z x L F z F -1 x t t X F s x F z F -1 x
127 simprl φ s B s z x L F z F -1 x t t X F z F -1 x t
128 126 127 sstrd φ s B s z x L F z F -1 x t t X F s x t
129 filss L Fil X F s x L t X F s x t t L
130 63 82 83 128 129 syl13anc φ s B s z x L F z F -1 x t t X t L
131 130 exp32 φ s B s z x L F z F -1 x t t X t L
132 ineq2 w = F -1 x z w = z F -1 x
133 132 imaeq2d w = F -1 x F z w = F z F -1 x
134 133 sseq1d w = F -1 x F z w t F z F -1 x t
135 134 imbi1d w = F -1 x F z w t t X t L F z F -1 x t t X t L
136 131 135 syl5ibrcom φ s B s z x L w = F -1 x F z w t t X t L
137 136 rexlimdva φ s B s z x L w = F -1 x F z w t t X t L
138 137 rexlimdvaa φ s B s z x L w = F -1 x F z w t t X t L
139 138 imp φ s B s z x L w = F -1 x F z w t t X t L
140 62 139 syldan φ z fi B x L w = F -1 x F z w t t X t L
141 60 140 sylbid φ z fi B w fi ran x L F -1 x F z w t t X t L
142 141 impr φ z fi B w fi ran x L F -1 x F z w t t X t L
143 imaeq2 s = z w F s = F z w
144 143 sseq1d s = z w F s t F z w t
145 144 imbi1d s = z w F s t t X t L F z w t t X t L
146 142 145 syl5ibrcom φ z fi B w fi ran x L F -1 x s = z w F s t t X t L
147 146 rexlimdvva φ z fi B w fi ran x L F -1 x s = z w F s t t X t L
148 48 55 147 3jaod φ s fi B s fi ran x L F -1 x z fi B w fi ran x L F -1 x s = z w F s t t X t L
149 47 148 sylbid φ s fi B ran x L F -1 x F s t t X t L
150 149 rexlimdv φ s fi B ran x L F -1 x F s t t X t L
151 150 impcomd φ t X s fi B ran x L F -1 x F s t t L
152 45 151 impbid φ t L t X s fi B ran x L F -1 x F s t