Metamath Proof Explorer


Theorem fmid

Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion fmid F Fil X X FilMap I X F = F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 f1oi I X : X 1-1 onto X
3 f1ofo I X : X 1-1 onto X I X : X onto X
4 2 3 ax-mp I X : X onto X
5 eqid X filGen F = X filGen F
6 5 elfm3 F fBas X I X : X onto X t X FilMap I X F s X filGen F t = I X s
7 1 4 6 sylancl F Fil X t X FilMap I X F s X filGen F t = I X s
8 fgfil F Fil X X filGen F = F
9 8 rexeqdv F Fil X s X filGen F t = I X s s F t = I X s
10 filelss F Fil X s F s X
11 resiima s X I X s = s
12 10 11 syl F Fil X s F I X s = s
13 12 eqeq2d F Fil X s F t = I X s t = s
14 equcom s = t t = s
15 13 14 bitr4di F Fil X s F t = I X s s = t
16 15 rexbidva F Fil X s F t = I X s s F s = t
17 risset t F s F s = t
18 16 17 bitr4di F Fil X s F t = I X s t F
19 7 9 18 3bitrd F Fil X t X FilMap I X F t F
20 19 eqrdv F Fil X X FilMap I X F = F