Metamath Proof Explorer


Theorem fmla

Description: The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmla Fmla ω = n ω Fmla n

Proof

Step Hyp Ref Expression
1 df-fmla Fmla = n suc ω dom Sat n
2 1 fveq1i Fmla ω = n suc ω dom Sat n ω
3 omex ω V
4 eqidd ω V n suc ω dom Sat n = n suc ω dom Sat n
5 fveq2 n = ω Sat n = Sat ω
6 5 dmeqd n = ω dom Sat n = dom Sat ω
7 6 adantl ω V n = ω dom Sat n = dom Sat ω
8 sucidg ω V ω suc ω
9 fvex Sat ω V
10 9 dmex dom Sat ω V
11 10 a1i ω V dom Sat ω V
12 4 7 8 11 fvmptd ω V n suc ω dom Sat n ω = dom Sat ω
13 3 12 ax-mp n suc ω dom Sat n ω = dom Sat ω
14 3 sucid ω suc ω
15 satf0sucom ω suc ω Sat ω = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j ω
16 14 15 ax-mp Sat ω = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j ω
17 limom Lim ω
18 rdglim2a ω V Lim ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j ω = n ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
19 3 17 18 mp2an rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j ω = n ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
20 16 19 eqtri Sat ω = n ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
21 20 dmeqi dom Sat ω = dom n ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
22 dmiun dom n ω rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n = n ω dom rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
23 elelsuc n ω n suc ω
24 fmlafv n suc ω Fmla n = dom Sat n
25 23 24 syl n ω Fmla n = dom Sat n
26 satf0sucom n suc ω Sat n = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
27 23 26 syl n ω Sat n = rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
28 27 dmeqd n ω dom Sat n = dom rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n
29 25 28 eqtr2d n ω dom rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n = Fmla n
30 29 iuneq2i n ω dom rec f V f x y | y = u f v f x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u x y | y = i ω j ω x = i 𝑔 j n = n ω Fmla n
31 21 22 30 3eqtri dom Sat ω = n ω Fmla n
32 2 13 31 3eqtri Fmla ω = n ω Fmla n