Metamath Proof Explorer


Theorem fmla0

Description: The valid Godel formulas of height 0 is the set of all formulas of the form v_i e. v_j ("Godel-set of membership") coded as <. (/) , <. i , j >. >. . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion fmla0 Fmla = x V | i ω j ω x = i 𝑔 j

Proof

Step Hyp Ref Expression
1 peano1 ω
2 elelsuc ω suc ω
3 fmlafv suc ω Fmla = dom Sat
4 1 2 3 mp2b Fmla = dom Sat
5 satf00 Sat = x y | y = i ω j ω x = i 𝑔 j
6 5 dmeqi dom Sat = dom x y | y = i ω j ω x = i 𝑔 j
7 0ex V
8 7 isseti y y =
9 19.41v y y = i ω j ω x = i 𝑔 j y y = i ω j ω x = i 𝑔 j
10 8 9 mpbiran y y = i ω j ω x = i 𝑔 j i ω j ω x = i 𝑔 j
11 10 abbii x | y y = i ω j ω x = i 𝑔 j = x | i ω j ω x = i 𝑔 j
12 dmopab dom x y | y = i ω j ω x = i 𝑔 j = x | y y = i ω j ω x = i 𝑔 j
13 rabab x V | i ω j ω x = i 𝑔 j = x | i ω j ω x = i 𝑔 j
14 11 12 13 3eqtr4i dom x y | y = i ω j ω x = i 𝑔 j = x V | i ω j ω x = i 𝑔 j
15 4 6 14 3eqtri Fmla = x V | i ω j ω x = i 𝑔 j