Metamath Proof Explorer


Theorem fmlafv

Description: The valid Godel formulas of height N is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at N . (Contributed by AV, 15-Sep-2023)

Ref Expression
Assertion fmlafv N suc ω Fmla N = dom Sat N

Proof

Step Hyp Ref Expression
1 df-fmla Fmla = n suc ω dom Sat n
2 1 a1i N suc ω Fmla = n suc ω dom Sat n
3 fveq2 n = N Sat n = Sat N
4 3 dmeqd n = N dom Sat n = dom Sat N
5 4 adantl N suc ω n = N dom Sat n = dom Sat N
6 id N suc ω N suc ω
7 fvex Sat N V
8 7 dmex dom Sat N V
9 8 a1i N suc ω dom Sat N V
10 2 5 6 9 fvmptd N suc ω Fmla N = dom Sat N