Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
1
|
eleq2d |
|
3 |
|
fveq2 |
|
4 |
3
|
eleq2d |
|
5 |
2 4
|
bibi12d |
|
6 |
5
|
imbi2d |
|
7 |
|
fveq2 |
|
8 |
7
|
eleq2d |
|
9 |
|
fveq2 |
|
10 |
9
|
eleq2d |
|
11 |
8 10
|
bibi12d |
|
12 |
11
|
imbi2d |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq2d |
|
15 |
|
fveq2 |
|
16 |
15
|
eleq2d |
|
17 |
14 16
|
bibi12d |
|
18 |
17
|
imbi2d |
|
19 |
|
fveq2 |
|
20 |
19
|
eleq2d |
|
21 |
|
fveq2 |
|
22 |
21
|
eleq2d |
|
23 |
20 22
|
bibi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
eqeq1 |
|
26 |
25
|
2rexbidv |
|
27 |
26
|
elrab |
|
28 |
|
eqidd |
|
29 |
|
simpr |
|
30 |
28 29
|
jca |
|
31 |
|
simpr |
|
32 |
31
|
anim2i |
|
33 |
32
|
ex |
|
34 |
30 33
|
impbid2 |
|
35 |
27 34
|
syl5bb |
|
36 |
|
fmla0 |
|
37 |
36
|
eleq2i |
|
38 |
37
|
a1i |
|
39 |
|
satf00 |
|
40 |
39
|
a1i |
|
41 |
40
|
eleq2d |
|
42 |
|
0ex |
|
43 |
|
eqeq1 |
|
44 |
43 26
|
bi2anan9r |
|
45 |
44
|
opelopabga |
|
46 |
42 45
|
mpan2 |
|
47 |
41 46
|
bitrd |
|
48 |
35 38 47
|
3bitr4d |
|
49 |
|
eqid |
|
50 |
49
|
biantrur |
|
51 |
50
|
bicomi |
|
52 |
51
|
a1i |
|
53 |
|
eqeq1 |
|
54 |
|
eqeq1 |
|
55 |
54
|
rexbidv |
|
56 |
|
eqeq1 |
|
57 |
56
|
rexbidv |
|
58 |
55 57
|
orbi12d |
|
59 |
58
|
rexbidv |
|
60 |
53 59
|
bi2anan9r |
|
61 |
60
|
opelopabga |
|
62 |
42 61
|
mpan2 |
|
63 |
59
|
elabg |
|
64 |
52 62 63
|
3bitr4d |
|
65 |
64
|
adantl |
|
66 |
65
|
orbi2d |
|
67 |
|
eqid |
|
68 |
67
|
satf0suc |
|
69 |
68
|
eleq2d |
|
70 |
|
elun |
|
71 |
69 70
|
bitrdi |
|
72 |
71
|
ad2antrr |
|
73 |
|
fmlasuc0 |
|
74 |
73
|
eleq2d |
|
75 |
74
|
ad2antrr |
|
76 |
|
elun |
|
77 |
76
|
a1i |
|
78 |
|
simpr |
|
79 |
78
|
imp |
|
80 |
79
|
orbi1d |
|
81 |
75 77 80
|
3bitrd |
|
82 |
66 72 81
|
3bitr4rd |
|
83 |
82
|
exp31 |
|
84 |
6 12 18 24 48 83
|
finds |
|
85 |
84
|
com12 |
|
86 |
|
prcnel |
|
87 |
86
|
adantr |
|
88 |
|
opprc1 |
|
89 |
88
|
adantr |
|
90 |
|
satf0n0 |
|
91 |
|
df-nel |
|
92 |
90 91
|
sylib |
|
93 |
92
|
adantl |
|
94 |
89 93
|
eqneltrd |
|
95 |
87 94
|
2falsed |
|
96 |
95
|
ex |
|
97 |
85 96
|
pm2.61i |
|