Metamath Proof Explorer


Theorem fmlan0

Description: The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023)

Ref Expression
Assertion fmlan0 Fmla ω

Proof

Step Hyp Ref Expression
1 fmlaomn0 x ω Fmla x
2 df-nel Fmla x ¬ Fmla x
3 1 2 sylib x ω ¬ Fmla x
4 3 nrex ¬ x ω Fmla x
5 df-nel Fmla ω ¬ Fmla ω
6 fmla Fmla ω = x ω Fmla x
7 6 eleq2i Fmla ω x ω Fmla x
8 eliun x ω Fmla x x ω Fmla x
9 7 8 bitri Fmla ω x ω Fmla x
10 5 9 xchbinx Fmla ω ¬ x ω Fmla x
11 4 10 mpbir Fmla ω