Metamath Proof Explorer


Theorem fmlasuc

Description: The valid Godel formulas of height ( N + 1 ) , expressed by the valid Godel formulas of height N . (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmlasuc N ω Fmla suc N = Fmla N x | u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u

Proof

Step Hyp Ref Expression
1 fmlasuc0 N ω Fmla suc N = Fmla N x | y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y
2 eqid Sat = Sat
3 2 satf0op N ω y Sat N z y = z z Sat N
4 fveq2 z = w 1 st z = 1 st w
5 4 oveq2d z = w 1 st y 𝑔 1 st z = 1 st y 𝑔 1 st w
6 5 eqeq2d z = w x = 1 st y 𝑔 1 st z x = 1 st y 𝑔 1 st w
7 6 cbvrexvw z Sat N x = 1 st y 𝑔 1 st z w Sat N x = 1 st y 𝑔 1 st w
8 7 orbi1i z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y
9 fmlafvel N ω z Fmla N z Sat N
10 9 biimprd N ω z Sat N z Fmla N
11 10 adantld N ω y = z z Sat N z Fmla N
12 11 imp N ω y = z z Sat N z Fmla N
13 vex z V
14 0ex V
15 13 14 op1std y = z 1 st y = z
16 15 eleq1d y = z 1 st y Fmla N z Fmla N
17 16 ad2antrl N ω y = z z Sat N 1 st y Fmla N z Fmla N
18 12 17 mpbird N ω y = z z Sat N 1 st y Fmla N
19 18 3adant3 N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y 1 st y Fmla N
20 oveq1 u = 1 st y u 𝑔 v = 1 st y 𝑔 v
21 20 eqeq2d u = 1 st y x = u 𝑔 v x = 1 st y 𝑔 v
22 21 rexbidv u = 1 st y v Fmla N x = u 𝑔 v v Fmla N x = 1 st y 𝑔 v
23 eqidd u = 1 st y i = i
24 id u = 1 st y u = 1 st y
25 23 24 goaleq12d u = 1 st y 𝑔 i u = 𝑔 i 1 st y
26 25 eqeq2d u = 1 st y x = 𝑔 i u x = 𝑔 i 1 st y
27 26 rexbidv u = 1 st y i ω x = 𝑔 i u i ω x = 𝑔 i 1 st y
28 22 27 orbi12d u = 1 st y v Fmla N x = u 𝑔 v i ω x = 𝑔 i u v Fmla N x = 1 st y 𝑔 v i ω x = 𝑔 i 1 st y
29 28 adantl N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y u = 1 st y v Fmla N x = u 𝑔 v i ω x = 𝑔 i u v Fmla N x = 1 st y 𝑔 v i ω x = 𝑔 i 1 st y
30 2 satf0op N ω w Sat N y w = y y Sat N
31 fmlafvel N ω y Fmla N y Sat N
32 31 biimprd N ω y Sat N y Fmla N
33 32 adantld N ω w = y y Sat N y Fmla N
34 33 imp N ω w = y y Sat N y Fmla N
35 vex y V
36 35 14 op1std w = y 1 st w = y
37 36 eleq1d w = y 1 st w Fmla N y Fmla N
38 37 ad2antrl N ω w = y y Sat N 1 st w Fmla N y Fmla N
39 34 38 mpbird N ω w = y y Sat N 1 st w Fmla N
40 39 adantr N ω w = y y Sat N x = z 𝑔 1 st w 1 st w Fmla N
41 oveq2 v = 1 st w z 𝑔 v = z 𝑔 1 st w
42 41 eqeq2d v = 1 st w x = z 𝑔 v x = z 𝑔 1 st w
43 42 adantl N ω w = y y Sat N x = z 𝑔 1 st w v = 1 st w x = z 𝑔 v x = z 𝑔 1 st w
44 simpr N ω w = y y Sat N x = z 𝑔 1 st w x = z 𝑔 1 st w
45 40 43 44 rspcedvd N ω w = y y Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
46 45 exp31 N ω w = y y Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
47 46 exlimdv N ω y w = y y Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
48 30 47 sylbid N ω w Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
49 48 rexlimdv N ω w Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
50 49 adantr N ω y = z z Sat N w Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
51 15 oveq1d y = z 1 st y 𝑔 1 st w = z 𝑔 1 st w
52 51 eqeq2d y = z x = 1 st y 𝑔 1 st w x = z 𝑔 1 st w
53 52 rexbidv y = z w Sat N x = 1 st y 𝑔 1 st w w Sat N x = z 𝑔 1 st w
54 15 oveq1d y = z 1 st y 𝑔 v = z 𝑔 v
55 54 eqeq2d y = z x = 1 st y 𝑔 v x = z 𝑔 v
56 55 rexbidv y = z v Fmla N x = 1 st y 𝑔 v v Fmla N x = z 𝑔 v
57 53 56 imbi12d y = z w Sat N x = 1 st y 𝑔 1 st w v Fmla N x = 1 st y 𝑔 v w Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
58 57 ad2antrl N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w v Fmla N x = 1 st y 𝑔 v w Sat N x = z 𝑔 1 st w v Fmla N x = z 𝑔 v
59 50 58 mpbird N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w v Fmla N x = 1 st y 𝑔 v
60 59 orim1d N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y v Fmla N x = 1 st y 𝑔 v i ω x = 𝑔 i 1 st y
61 60 3impia N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y v Fmla N x = 1 st y 𝑔 v i ω x = 𝑔 i 1 st y
62 19 29 61 rspcedvd N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
63 62 3exp N ω y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
64 63 exlimdv N ω z y = z z Sat N w Sat N x = 1 st y 𝑔 1 st w i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
65 8 64 syl7bi N ω z y = z z Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
66 3 65 sylbid N ω y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
67 66 rexlimdv N ω y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
68 fmlafvel N ω u Fmla N u Sat N
69 68 biimpa N ω u Fmla N u Sat N
70 69 adantr N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u u Sat N
71 vex u V
72 71 14 op1std y = u 1 st y = u
73 72 oveq1d y = u 1 st y 𝑔 1 st z = u 𝑔 1 st z
74 73 eqeq2d y = u x = 1 st y 𝑔 1 st z x = u 𝑔 1 st z
75 74 rexbidv y = u z Sat N x = 1 st y 𝑔 1 st z z Sat N x = u 𝑔 1 st z
76 eqidd y = u i = i
77 76 72 goaleq12d y = u 𝑔 i 1 st y = 𝑔 i u
78 77 eqeq2d y = u x = 𝑔 i 1 st y x = 𝑔 i u
79 78 rexbidv y = u i ω x = 𝑔 i 1 st y i ω x = 𝑔 i u
80 75 79 orbi12d y = u z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y z Sat N x = u 𝑔 1 st z i ω x = 𝑔 i u
81 80 adantl N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u y = u z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y z Sat N x = u 𝑔 1 st z i ω x = 𝑔 i u
82 fmlafvel N ω v Fmla N v Sat N
83 82 biimpd N ω v Fmla N v Sat N
84 83 adantr N ω u Fmla N v Fmla N v Sat N
85 84 imp N ω u Fmla N v Fmla N v Sat N
86 85 adantr N ω u Fmla N v Fmla N x = u 𝑔 v v Sat N
87 vex v V
88 87 14 op1std z = v 1 st z = v
89 88 oveq2d z = v u 𝑔 1 st z = u 𝑔 v
90 89 eqeq2d z = v x = u 𝑔 1 st z x = u 𝑔 v
91 90 adantl N ω u Fmla N v Fmla N x = u 𝑔 v z = v x = u 𝑔 1 st z x = u 𝑔 v
92 simpr N ω u Fmla N v Fmla N x = u 𝑔 v x = u 𝑔 v
93 86 91 92 rspcedvd N ω u Fmla N v Fmla N x = u 𝑔 v z Sat N x = u 𝑔 1 st z
94 93 rexlimdva2 N ω u Fmla N v Fmla N x = u 𝑔 v z Sat N x = u 𝑔 1 st z
95 94 orim1d N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u z Sat N x = u 𝑔 1 st z i ω x = 𝑔 i u
96 95 imp N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u z Sat N x = u 𝑔 1 st z i ω x = 𝑔 i u
97 70 81 96 rspcedvd N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y
98 97 rexlimdva2 N ω u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y
99 67 98 impbid N ω y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
100 99 abbidv N ω x | y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y = x | u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
101 100 uneq2d N ω Fmla N x | y Sat N z Sat N x = 1 st y 𝑔 1 st z i ω x = 𝑔 i 1 st y = Fmla N x | u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u
102 1 101 eqtrd N ω Fmla suc N = Fmla N x | u Fmla N v Fmla N x = u 𝑔 v i ω x = 𝑔 i u