| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fmla |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
dmeqd |
|
| 4 |
|
omsucelsucb |
|
| 5 |
4
|
biimpi |
|
| 6 |
|
fvex |
|
| 7 |
6
|
dmex |
|
| 8 |
7
|
a1i |
|
| 9 |
1 3 5 8
|
fvmptd3 |
|
| 10 |
|
satf0sucom |
|
| 11 |
5 10
|
syl |
|
| 12 |
|
nnon |
|
| 13 |
|
rdgsuc |
|
| 14 |
12 13
|
syl |
|
| 15 |
11 14
|
eqtrd |
|
| 16 |
15
|
dmeqd |
|
| 17 |
|
elelsuc |
|
| 18 |
|
satf0sucom |
|
| 19 |
18
|
eqcomd |
|
| 20 |
17 19
|
syl |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
eqidd |
|
| 23 |
|
id |
|
| 24 |
|
rexeq |
|
| 25 |
24
|
orbi1d |
|
| 26 |
25
|
rexeqbi1dv |
|
| 27 |
26
|
anbi2d |
|
| 28 |
27
|
opabbidv |
|
| 29 |
23 28
|
uneq12d |
|
| 30 |
29
|
adantl |
|
| 31 |
|
fvex |
|
| 32 |
31
|
a1i |
|
| 33 |
|
peano1 |
|
| 34 |
|
eleq1 |
|
| 35 |
33 34
|
mpbiri |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
pm4.71ri |
|
| 38 |
37
|
opabbii |
|
| 39 |
|
omex |
|
| 40 |
|
id |
|
| 41 |
|
unab |
|
| 42 |
31
|
abrexex |
|
| 43 |
39
|
abrexex |
|
| 44 |
42 43
|
unex |
|
| 45 |
41 44
|
eqeltrri |
|
| 46 |
45
|
a1i |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
|
abrexex2g |
|
| 49 |
31 47 48
|
sylancr |
|
| 50 |
40 49
|
opabex3rd |
|
| 51 |
39 50
|
ax-mp |
|
| 52 |
|
simpr |
|
| 53 |
52
|
anim2i |
|
| 54 |
53
|
ssopab2i |
|
| 55 |
51 54
|
ssexi |
|
| 56 |
55
|
a1i |
|
| 57 |
38 56
|
eqeltrid |
|
| 58 |
|
unexg |
|
| 59 |
31 57 58
|
sylancr |
|
| 60 |
22 30 32 59
|
fvmptd |
|
| 61 |
21 60
|
eqtrd |
|
| 62 |
61
|
dmeqd |
|
| 63 |
|
dmun |
|
| 64 |
62 63
|
eqtrdi |
|
| 65 |
|
fmlafv |
|
| 66 |
17 65
|
syl |
|
| 67 |
66
|
eqcomd |
|
| 68 |
|
dmopab |
|
| 69 |
68
|
a1i |
|
| 70 |
|
0ex |
|
| 71 |
70
|
isseti |
|
| 72 |
|
19.41v |
|
| 73 |
71 72
|
mpbiran |
|
| 74 |
73
|
abbii |
|
| 75 |
69 74
|
eqtrdi |
|
| 76 |
67 75
|
uneq12d |
|
| 77 |
64 76
|
eqtrd |
|
| 78 |
9 16 77
|
3eqtrd |
|