Metamath Proof Explorer


Theorem fmpt2d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014)

Ref Expression
Hypotheses fmpt2d.2 φ x A B V
fmpt2d.1 φ F = x A B
fmpt2d.3 φ y A F y C
Assertion fmpt2d φ F : A C

Proof

Step Hyp Ref Expression
1 fmpt2d.2 φ x A B V
2 fmpt2d.1 φ F = x A B
3 fmpt2d.3 φ y A F y C
4 1 ralrimiva φ x A B V
5 eqid x A B = x A B
6 5 fnmpt x A B V x A B Fn A
7 4 6 syl φ x A B Fn A
8 2 fneq1d φ F Fn A x A B Fn A
9 7 8 mpbird φ F Fn A
10 3 ralrimiva φ y A F y C
11 ffnfv F : A C F Fn A y A F y C
12 9 10 11 sylanbrc φ F : A C