Metamath Proof Explorer


Theorem fmpt3d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses fmpt3d.1 φ F = x A B
fmpt3d.2 φ x A B C
Assertion fmpt3d φ F : A C

Proof

Step Hyp Ref Expression
1 fmpt3d.1 φ F = x A B
2 fmpt3d.2 φ x A B C
3 2 fmpttd φ x A B : A C
4 1 feq1d φ F : A C x A B : A C
5 3 4 mpbird φ F : A C