Metamath Proof Explorer


Theorem fmptap

Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses fmptap.0a A V
fmptap.0b B V
fmptap.1 R A = S
fmptap.2 x = A C = B
Assertion fmptap x R C A B = x S C

Proof

Step Hyp Ref Expression
1 fmptap.0a A V
2 fmptap.0b B V
3 fmptap.1 R A = S
4 fmptap.2 x = A C = B
5 fmptsn A V B V A B = x A B
6 1 2 5 mp2an A B = x A B
7 elsni x A x = A
8 7 4 syl x A C = B
9 8 mpteq2ia x A C = x A B
10 6 9 eqtr4i A B = x A C
11 10 uneq2i x R C A B = x R C x A C
12 mptun x R A C = x R C x A C
13 3 mpteq1i x R A C = x S C
14 11 12 13 3eqtr2i x R C A B = x S C