Metamath Proof Explorer


Theorem fmptapd

Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017) (Revised by AV, 10-Aug-2024)

Ref Expression
Hypotheses fmptapd.a φ A V
fmptapd.b φ B W
fmptapd.s φ R A = S
fmptapd.c φ x = A C = B
Assertion fmptapd φ x R C A B = x S C

Proof

Step Hyp Ref Expression
1 fmptapd.a φ A V
2 fmptapd.b φ B W
3 fmptapd.s φ R A = S
4 fmptapd.c φ x = A C = B
5 4 1 2 fmptsnd φ A B = x A C
6 5 uneq2d φ x R C A B = x R C x A C
7 mptun x R A C = x R C x A C
8 7 a1i φ x R A C = x R C x A C
9 3 mpteq1d φ x R A C = x S C
10 6 8 9 3eqtr2d φ x R C A B = x S C