Metamath Proof Explorer


Theorem fmptcof2

Description: Composition of two functions expressed as ordered-pair class abstractions. (Contributed by FL, 21-Jun-2012) (Revised by Mario Carneiro, 24-Jul-2014) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses fmptcof2.x _ x S
fmptcof2.y _ y T
fmptcof2.1 _ x A
fmptcof2.2 _ x B
fmptcof2.3 x φ
fmptcof2.4 φ x A R B
fmptcof2.5 φ F = x A R
fmptcof2.6 φ G = y B S
fmptcof2.7 y = R S = T
Assertion fmptcof2 φ G F = x A T

Proof

Step Hyp Ref Expression
1 fmptcof2.x _ x S
2 fmptcof2.y _ y T
3 fmptcof2.1 _ x A
4 fmptcof2.2 _ x B
5 fmptcof2.3 x φ
6 fmptcof2.4 φ x A R B
7 fmptcof2.5 φ F = x A R
8 fmptcof2.6 φ G = y B S
9 fmptcof2.7 y = R S = T
10 relco Rel G F
11 mptrel Rel x A T
12 6 r19.21bi φ x A R B
13 eqid x A R = x A R
14 5 3 4 12 13 fmptdF φ x A R : A B
15 7 feq1d φ F : A B x A R : A B
16 14 15 mpbird φ F : A B
17 16 ffund φ Fun F
18 funbrfv Fun F z F u F z = u
19 18 imp Fun F z F u F z = u
20 17 19 sylan φ z F u F z = u
21 20 eqcomd φ z F u u = F z
22 21 a1d φ z F u u G w u = F z
23 22 expimpd φ z F u u G w u = F z
24 23 pm4.71rd φ z F u u G w u = F z z F u u G w
25 24 exbidv φ u z F u u G w u u = F z z F u u G w
26 fvex F z V
27 breq2 u = F z z F u z F F z
28 breq1 u = F z u G w F z G w
29 27 28 anbi12d u = F z z F u u G w z F F z F z G w
30 26 29 ceqsexv u u = F z z F u u G w z F F z F z G w
31 funfvbrb Fun F z dom F z F F z
32 17 31 syl φ z dom F z F F z
33 16 fdmd φ dom F = A
34 33 eleq2d φ z dom F z A
35 32 34 bitr3d φ z F F z z A
36 7 fveq1d φ F z = x A R z
37 eqidd φ w = w
38 36 8 37 breq123d φ F z G w x A R z y B S w
39 35 38 anbi12d φ z F F z F z G w z A x A R z y B S w
40 3 nfcri x z A
41 nffvmpt1 _ x x A R z
42 4 1 nfmpt _ x y B S
43 nfcv _ x w
44 41 42 43 nfbr x x A R z y B S w
45 nfcsb1v _ x z / x T
46 45 nfeq2 x w = z / x T
47 44 46 nfbi x x A R z y B S w w = z / x T
48 5 47 nfim x φ x A R z y B S w w = z / x T
49 40 48 nfim x z A φ x A R z y B S w w = z / x T
50 eleq1w x = z x A z A
51 fveq2 x = z x A R x = x A R z
52 51 breq1d x = z x A R x y B S w x A R z y B S w
53 csbeq1a x = z T = z / x T
54 53 eqeq2d x = z w = T w = z / x T
55 52 54 bibi12d x = z x A R x y B S w w = T x A R z y B S w w = z / x T
56 55 imbi2d x = z φ x A R x y B S w w = T φ x A R z y B S w w = z / x T
57 50 56 imbi12d x = z x A φ x A R x y B S w w = T z A φ x A R z y B S w w = z / x T
58 vex w V
59 nfv y R B
60 2 nfeq2 y w = T
61 59 60 nfan y R B w = T
62 simpl y = R u = w y = R
63 62 eleq1d y = R u = w y B R B
64 simpr y = R u = w u = w
65 9 adantr y = R u = w S = T
66 64 65 eqeq12d y = R u = w u = S w = T
67 63 66 anbi12d y = R u = w y B u = S R B w = T
68 df-mpt y B S = y u | y B u = S
69 61 67 68 brabgaf R B w V R y B S w R B w = T
70 12 58 69 sylancl φ x A R y B S w R B w = T
71 simpr φ x A x A
72 3 fvmpt2f x A R B x A R x = R
73 71 12 72 syl2anc φ x A x A R x = R
74 73 breq1d φ x A x A R x y B S w R y B S w
75 12 biantrurd φ x A w = T R B w = T
76 70 74 75 3bitr4d φ x A x A R x y B S w w = T
77 76 expcom x A φ x A R x y B S w w = T
78 49 57 77 chvarfv z A φ x A R z y B S w w = z / x T
79 78 impcom φ z A x A R z y B S w w = z / x T
80 79 pm5.32da φ z A x A R z y B S w z A w = z / x T
81 39 80 bitrd φ z F F z F z G w z A w = z / x T
82 30 81 syl5bb φ u u = F z z F u u G w z A w = z / x T
83 25 82 bitrd φ u z F u u G w z A w = z / x T
84 vex z V
85 84 58 opelco z w G F u z F u u G w
86 df-mpt x A T = x v | x A v = T
87 86 eleq2i z w x A T z w x v | x A v = T
88 45 nfeq2 x v = z / x T
89 40 88 nfan x z A v = z / x T
90 nfv v z A w = z / x T
91 53 eqeq2d x = z v = T v = z / x T
92 50 91 anbi12d x = z x A v = T z A v = z / x T
93 eqeq1 v = w v = z / x T w = z / x T
94 93 anbi2d v = w z A v = z / x T z A w = z / x T
95 89 90 84 58 92 94 opelopabf z w x v | x A v = T z A w = z / x T
96 87 95 bitri z w x A T z A w = z / x T
97 83 85 96 3bitr4g φ z w G F z w x A T
98 10 11 97 eqrelrdv φ G F = x A T